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1. Introduction

When we deal with a differential equation of any type, it frequently happens that its
solution is not expressible in closed form, and even if a given differential equation posse-
sses a closed form solution in terms of known functions, it [also happens that the solution
is represented by little tabulated functions.

In these cases, a numerical approach is the most convenient way for solving the differen-
tial equation. Many methods are available for solving it numerically, so it is important
for us to choose the best one among them. An index of it is the error, for the error analysis
gives a qualitative basis for an estimation of the computation value and it serves to give
the guarantee of accuracy for a computed solution. When we get ‘'some approximate solution
of the differential equation, we wish to know something about the size of the error. But the
estimation of the error is so complicated that it is hard to get a practical and efficient
estimate.

W. Ublmann in Hamburg developes the error bound function, corresponding to the error, of
the system of the ordinary differential equations of the first order, considering some kind
of “majorant”,

On the other hand, G. G. Dahlquist in Stockholm is working in the same line and he intro-
duces the concept of majorant functions in his essential step.

We are interested in both methods, but unfortunately the ‘publications referring to them
are little, consequently numerical experiments on practical examples are needed before
successful use of it. Especially on latter method, the algorithms are not yet completely
specified, as he says.

We shall compare the Uhlmann’s method with some rude one of the estimation of the
error bounds of the above type of the differential equation,

For simplicity we shall ignore rounding error in obtaining the following error estimates,
i.e, we estimate only the inherent or truncation errors, Rounding error will, of course, be
propagated throughout the calculation, but we take the view that, knowing an upper bound for
the inherent error from one of the estimate, we can calculate with a number of decimal
sufficient to ensure that the rounding error remain within this bound. In principle it would
not be difficult to derive similar estimates for the rounding errors.

2. Efficient error bound

We consider the initial value problems of a system of s ordinary differential equations
of the first order



115

(2- 1) Yl’=fi(X,Y1(X), "",ys(x)), Yi(XO)=YiO (i=112y "",S),
where the functions f; possess (r+1)-th continuous partial derivatives with respect to (s+1)
variables.
We set sn=%o+nh (h is the step length, n=0,1,----,N+1). In the following the existence

of the solution will be assumed. We calculate approximate values yin to the values yi(Xn)
of the exact solutions at the points %n by the way of the r-th order Adams interpolation
method for m+1<n<N+1 (m=r-1).

We abbreviate fin to fi(Zn, Y, ** ) Yen).

Let Pin(x) be the polynomial of degree r such that Pn(xx) =fix (k=n+1-r1,---:,0+1),
then

Xn-+1
yi, n+1=Yin+f Pmn(t)dt.

Xn
For %n=x<xnp1(n=m, ----,N) we define the functions yi’ (x);
X
.2 yi*(X) =Vin+ Pn(t)dt,
Xn

and the defect di(x):
di(®) =y (X)) — fi(%, y1* (%), - - -+, ¥s* (XD).
From (2.2)
di(x) =Pu(@) - {i(®, 7:*X), - - -+, ¥s*(X)), for Zn<x=<Znt1.

We calculate the bound dim of |di(X)].

Owing to the fact the functions yi*(x) and fi(X,v1*(X), ---,¥s*¥(X)) are §(r+1)-th continu-
ously differentiable, there exist (r+1)-th continuously differentiable functions defined in
the interval [Zn+1-r,Xa+2] such that

gl(x) = fi(X) V1 K (X)l cet ,Ys*(x)) for XnéXéXrH.l
and gi(%) = fix for k=n+1-r1,----,0+2.

By the well-known formula on interpolation polynomial,

[di(®) | =Mryy hr+1 « Max |gir+(2) | for xa<Xx<Xat1(n=m, ----,N),
Xnt1-r<=X < Xn41
where M,= Max l(t—l)(t—z)....(t_r)‘
T—-1<t<r r!

We define the error ¢i(Xx) such that

ei(x) =yi" () —yi(x),

and we put the initial error bound Ei : |ei(Xm)|=Ei.
In addition to these, we define the Lipschitz quotient Lix(x) such that

2.3

Lik(x) — fi(X, Yl(x)y cett ,Yk—l(X)ka"""(X)y e rYS*(X)) - fi(X’Y1<X)1 AT Yk(x)ka-H*(X)" et ,Ys*"(X))

Vit () — v (X) *
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We assume that the functions Lix(x) are continuous and bounded in Xm=<xX<xn,
i.e., lSLix(X)=<Lik, |Lik(®x) <Kix=Max{|lik|, |Lik] ).

From (2.1) and (2.3)

el(x) = é‘Limx)skcx)micx) (i=1,2,----,9).

Then we have the following
[THEOREM I}

If the functions Ei(x) are solutions of the initial value problem

S
(2.4 Ei/(x)= 23 KiEx&X)+LiiEix)+dim, Ei(Zm)=Ei,
2
then, f07' Xm <XZXN,
leiDI<Ei(x)  (i=1,2,----,9).

PROOF. We put

ei(X)=e _a(x-x"‘)ui(x), for any « such that a=Max Kii.
i
Then we have

W = 3 L)+ (L () +a) ui(x) + e EXm g x,
bind;
Ui(Xm) =¢&i(Xm).

We consider for X=Xm and i=1,2,----,s,

(2.5) Zl(x) = é; K nz4(x) + (L1 + a)z:(0) + e E g

kxi
Each solution of (2.5) is written in the form
S
2i(X) =zi0(X) + kZ'l zk(Zm )z 1k(X),

where zio(X) is a particular solution of the inhomogeneous equation, zi(X) are solutions of

the homogeneous equation, and zi(Xm) =90k (i=1,2,-++,8; k=0,1,----,8). We wish to show
that all the zi(x)=0. To this end we put
ZP(X) = 2x(Zm),
(o+1) X s ® ® a(t—Xm)
and Zik (X)=Zik(xm)+f { leiijk (O + (Lii+a)ziy’ (t) + dixe dimydt.
Xm 1=
ixi

Then we get lim zgﬂ)(x)=zik(x) by means of the Picard-Lindeloff theorem.
p——)OO
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By induction, we have z$P(x)=0, and it follows that zi(x)=0.
We denote the solutions of (2.5) with conditions uio(Xm)=¢i(xm) and Ui(Xm)=Ei by uio(X)
and Ui(x) respectively. In addition, let

ui, p+1(X) = €i(Xm) +f (kZ' Lik(t)ukp(t)-f-(Ln(t)+a)mp(t)+ea( _Xm)di(t)}dt
Xm

=1

ki
for p=0,1,2, -+ and Xm=X<XN.
We easily verify, by induction, that
luip()|<Vi(x)  (1=1,2,----,8; p=0,1,2, - ").
Again applying the Picard-Lindel6ff theorem,

lim uip(x) =ui(x), and also |ui(x)]| <Ui(x).
p—)OO

We put

Ei(x)=e~ * G7Xmy (x),

then Ei(x) satisfies (2.4), and

L) | = | m(e ™ ¥ET X)) <Uix) ¢ T ¥EX I _By(x).

Next result will be used later.
[COROLLARY]
For Xm=<x<ZIN,

(X—Xm)L__
e 1. ifL+o

peE— X)L | g .

le(x)| =EX) =S
E+dm(X—3%m), if L=0.
PROOF. Taking i=1 in (2.4), we can prove immediately.

.3. Error bound for the improved polygon method ’
Hereafter we restrict our attention to the first order differential equation
@.1D =1y, Y(Xo)=Yo.

We assume that the function f(x,y)
(a) 1is continuous in a domain D of the real (x,y) plane,
(b) is bounded as |f(x,¥)|<M for any (x,y)E€D,
(¢) satisfies the Lipschitz condition

[£(x,7)—f(x,y*)|<K!y—y*| for any (x,¥) and (%,y*)€D
. . dkf
(d) possesses bounded derivatives |ﬁ|§Nk (k=1,2).

By Va we denote the approximations of the values y(xn) of the exact solution of (3.1) at
the points n (n=1,2, - ).

Now we calculate the next Va1 from ya by the formula
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Ya+1=Yn+ hfos I,

where h=Xnt1—%n, fot}= (Kt 3) Vot L), Zatt=Xn+ %h, and Yn45-=¥n+ %hfn.

The error in the approximate values yn» means the quantity

G.2) en=Yn—Y(Zn).
We put den=ent1—eén
so that

Xn+1
A€n=hf(Xn+%, Yn+ %hfn) - f F(x)dz
X

n

with F(x)=1(x, y(x)).
We set

@3.3) den=In+ hJn,

Xn+1
where In=hF(%+1)— f ! F(x)dx, and Jn=f(Xn+%,Yn+%+%hfn)—f(Xn+ley(Xn+lT)).
Xn

For the quadrature erior I the next well-known inequality holds:
(3.4) | In] <h3Ny/24.

Using the Lipschitz condition (c), we obtain
3.5 ]l S Klyor T+ Shfa—y (o k) | K- (4 20K e +HND,
From (3.8), (3.4) and (3.5), it follows that
lens1|<[en] (1+hK+ %thz) + %h3(KN1+—%Nz).

Thus, we obtain the independent error bound fiom this recursive error estimate. The
result obtained is stated in theorem form as follows.
[THEOREM II]

Let en be the ervor defined by (8.2) and En* be the ervor bound of en, then

a +hK+%h’KZ)"—-1

1 N
En* =-4 hz (N]_ +—)
8 3K 1+ +hK
2
4. Numerical examples

As the first example, we consider the inital value problem

yI=y-x, y(0)=2.

We compute the values yn which are the approximations of the exact solution y(x) at the
points xn, using the Lunge-Kutta method of the fourth oider with h=0.1. Table I shows the
values of the error bounds corresponding to the methods in sec. 2 and 3.
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Table I

n Xn VYn dm E(xn) En*

2 0.2 2.421 403 0.000 071 0.000 041 0.001 007
3 0.3 2.649 858 0.000 079 0.000 054 0.001 774
4 0.4 2.891 824 0.000 087 0:000 071 0.002 760
5 0.5 3.148 721 0.000 096 0.000 092 0.004 007
6 0.6 3.422 118 0.000 106 0.000 118 0.005 564
7 0.7 3.713 752 0.000 117 0.000 151 0. 007 489
8 0.8 4.025 540 0.000 130 0.000 192 0.009 851
9 0.9 4.359 601 0.000 143 0.000 242 0.012 738
10 1.0 4.718 280 0.000 158 0.000 304 0.016 239

As another éxample, let’s discuss the initial value problem
yl=2%y, y(@)=1.

The approximations yn are calculated by the second order Adams interpolation method
with the step length h=0.01. We represent the result calculated for E(xn) aud En* in Table
II.

Table 11

n Xn Yn dm E(xn) En%

5 2.05 1.224 461 0.000 074 0.000 004 0.000 019
10 2.10 1.506 820 0.000 098 0.000 010 0.000 055
15 2.15 1.863 587 0.000 130 0.000 019 0.000 122
20 2.20 2.316 377 0.000 174 0.000 034 0.000 240
25 2.25 2.893 613 0.000 234 0.000 056 0.000 452
30 2.30 3.632 813 0.000 315 0.000 088 0.000 829
35 2.35 4.583 710 0.000 425 0.000 135 0.001 499
40 2.40 5.812 498 0.000 577 0.000 205 0.002 698
45 2.45 7.407 642 0.000 787 0.000 307 0.004 860
50 2.50 9. 487 869 0.001 077 0.000 455 0.008 789

5. Comment
These examples show that the value of the error bound E(x) introduced by Uhlmann is
smaller than E¥, and it increases slowly as n does. In comparing other methods it may be
sure that the Uhlmann’s method is very efficient. His procedure consists in taking the error
bound function E(x), corresponding to the error function e(x), which is the solution of the
first order linear differential equation with constant coefficients. Generally speaking, it
is not easy to seek bounds of Lipschitz quotients. Moreover, even if the function E(x) is
expressed in exact form, we must calculate the value of it numerically.
When the system of the differential equations is given, the numerical procedure of the
error bound function E(x) is more complicated.
References
1. W. Uhlmann: Fehlerabschitzungen bei Anfangswertaufgaben gewdhnlicher Differentialgleichungs—
systeme 1.Ordnung, Z. angew. Math. Mech. Bd. 37 (1957).
2. W. Uhlmann: Zur Fehlerabschitzung bei Interpolationspolynomen, Z. angew. Math. Mech. Bd. 37 (195D).
3. L. Collatz: The Numerical Treatment of Differential Equations, Spriger-Verlag (1959).
4. G. G. Dahlquist: On Rigorous Error Bounds in the Numerical Solution of Ordinary Differential
Equations, Proceeding of an Advanced Symposium Conducted by the Mathematics Research Center,
ed. by D. Greenspan, John Willy & Sons, Inc. (1966).



	05_116
	05_117
	05_118
	05_119
	05_120
	05_121

