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On Quadratic Convergence
of Successive Iterative Method
in Nonlinear Two-point Boundary Value Problem
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Takashi Yoshimura

Let us examine the linear equation

u=0 , u(0)=a u(b) =2, (1.1
a two-point boundary value problem.
Let u; and u, be the two principal solutions of the homogeneous equation ahove, defined by
the initial conditions

w(0)=1 w(0)=0 uh(0)=0 uh(0)=1. 1.2
Then, by virtue of the linearity of (1.1), we have

u(t) =aw(t) + a—’_'—aMuz(t).

uz(b)
By the initial conditions (1.2), we have
m=1 u=t. 1.3
Hence, we can see that
u=a;+ a’—ggl t.
We now turn our attention to the inhomogeneous equation
ull+r(t) =0

with the two-point boundary conditions
u(0)=a u(b) =a,.
Taking advantage of linearity, we write
u=v+w
where w and v are chosen, respectively, to satisfy the equations
wlh+r(t)=0, w(0)=0 w/(0)=0
and vI'=0, v(iQ)=a v(b) =a;—w(b).
Let w and u, be particular solutions of the homogeneous equation (1.1), and write

1.4

W = S1Us+ Sqlly
where s; and s, are functions of t to be determined at our convenience.
Then
w!=suh+ Saub + shui+ shu,.
To simplify, set
shui+ shu, =0. (1.5)
Since w/=suh+sukh, with this condition on sh and sk, we have
wh = s+ sulh+ shul;+ shul,,
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Since u, and u, are the principal solutions of the homogeneous equation (1.1),
uh=0 and uh=0.
Hence, combining with (1.4),
shul,+ shuh = —1(t).
Combining this with (1.5), we have two simultaneous linear algebraic equations for s/

and sh.
A solution exists, provided that the determinant
W(t) ="t
ul; uk)

is nonzero. From (1.3) we have

w () =]t t‘=1
1

and
0 Uzi
.._r(t) u; 0 t‘
S’1=‘—vvzt>—’= —r(oy 17O
o
uh —1(t)
S’2='-‘vm7——‘ N
Hence,

t
S =f tlf(tl)dtl
(o]

t
S; = —f r(t)dt,
[0}

choosing $,(0) =s:(0) =0, since we want to satisfy the conditions w(0)=w/(0)=0.
Thus,

-t t
w =Jo r(tl)(tl—t) dt]_:‘/; G(ty tl)r'(tl)dtl

where G(t, t)=t—t. (1.6)
Now we shall solve the equation
w+1(t) =0, u(0) =u(b) =0. 1.m

The general solution of (1.7) has the form
t
u=cyg (t) +f G(t, t)r(t)dt;
0
where c; is a constant to be determined. Setting t=b, we see that
__ fb G(b, tDT(t) 4,
0 Uz(b) :
Hence,

—_—u(t) t
u= Uz(zb) f G(b tl)l’(tl)dt, f G(t' tl)r(tl)dtl

b t
—_—u(t) 3 ) .
T u(b) ﬁ G(b, tl)r(tl)dtl-’-A/; 1G(t, t) o) G(b, t): r(ty)dt,.
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Thus,
b W )
U(t)=f K(t, t5, b)r(ty)dt,
(o]
where \ ¥
; | 6Ct, -3 Gb, 1) ostiet
uz(b)
BOBDH w6y e <b
- uz(b) ( y tl) . ! <= L1 <D,
By (1.6) \
K(t, ta, b)={t(b_ tl)/b tétléb
ti(b—1t)/b oLt Lt
2.

Now we apply quasilinearization to the two-point boundary value problem,
all+ f(ul, u,x) =0
u(0)=u(b) =0. ’ K
Let uo(x) be some initial approxirﬁation and consider the sequence {un) determined by the
recurrence relation ,
un1/!+ fu(un/, un, X)(Un+1’—Un’_)+ fu(un/, un, X)(Un+1—Un)+f(Up7, Un, X)=0
Un+1(0) =tn41(b) =0.
We obtain the linear integral equation

@.1n

b .
Un+1 =f K(x, y) f(un!, un, ¥)+ fuCn!, un, ¥)(Unt1—un) + fuy(un, Un, ¥) (Un+1/ —un/)"dy
0
@.2)
where K(x, y) is the Green’s function

K(x, ) ={(b—x)y/b 0Ly <£LX
(b—y)x/b x£y<£b.,
We can easily see that
max K(x, y)=—z~
X,y
where the maximization is over the region 0<x, y<b.
Let

max max ([f(u/, u, x)|, |[fu(u/, u, )|, |fw/, u, x)|)=m,
lul <1

assuming that m<{oo, and choose uo(x) so that
Juo(x) | <1, for 0«x«b. '
Turning to (2.2), we have

b .
lUn+1|éf (K, v)[]£Cunl, un, )|+ | fuCun, un, ¥)|[un1] + | fuCun/, tn, 7)]jun]
0

+ | fuCunly tn, ¥ [Juner!] + | furCunl, un, y)]|unt|” dy.
Hence, writing m;=max |uw(x)| and assuming |uw/(x)| <c|un(x)| (a=0, 1, 2,---)
0£LxX«b ’

for some finite number c, we have, for n=0
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b )
mlé%f (m-+ mm;+ m+ mcm;+ mc_ dy = bzm(42+‘c)+ b’(1+2)mm1.
0

p(1+c)m

Provided, therefore, that i

<1, we obtain the bound

Pm(2+c)
me_ 4
1— P(1+c)m -
4
The upper bound is itself less than 1 if B’< W‘%ﬂc)—’ and we can establish the uniform
boundedness of the sequence {un(x)} for b sufficiently small.
We have thus demonstrated that the inductive definition of the sequence {un(X)} is mean-
ingful. '
We shall show that this sequence {un} converges quadratically.
Returning to the recurrence relation of (2. 1), let us subtract the n-th equation from the
(n+1) st '
(Uns1— un) !+ £(unly tn, X) — £(Un—1/y Un—1, X)
— (Un—tn=1) fu(ta=1/, tn-1, X)— (Un!— tn=1)) fusCn=1/, tn-1, X)
+ (Unt1— tn) fu(tin!, tn, X)+ (untr/—un!) fur(un!, tn, X)=0.
Regarding this as a differential equation fOor uny1—Un and converting into an integral equa-
tion as before, we have

b
Ung1—Un= f K, YOl un, ¥)—1n-1), Un-1, )
0

— (Un—Un=1) fuCtin=1/, tn-1, ) — (tn! = =1 fu/(tn-1/, to-1, Y0
+ (Un+1—Un) fu(um!, n, ) + (o1 —unl) fu!Cunl, Un, )] dy.
The mean-value theorem tells us that
f(un!, tn, X) —f(un=1/, tn=1, X)
— (tn—un=1) fu(tn—-1/, tn-1, %) — (un! —tn=1N) fuy(tn-1/, =1, X)

62
=%{ (uﬂ—un—l)z %f(@h @2’ X)+2(Un—lln—l)(Un’—' un—l’) auau' f(@l, @2, X)

o

+ (Un! — un=1/)? dulk (6, O, X}

where 0, lies between un—1 and un, and @, lies Petween Un—1! and w/.
Hence, letting

., O 0° 0?
k=|n|1i{1maXJ([ e fu,u, %], | Guau'_f(u” u,X)|, | auk i, u, D),
ul <L

we have, very much as before,
b (P k
|Ung1—Un! é——f [ 2{(Un—Uun-1)2+2¢(Un— Un—1)*
4 J, 2

+ ¢2(Un — Un—1)2} + M| Un41— Un| + MC|Unt1—Un] ] dY.
Hence,
Pk(1+c)?
8
max |Ung1—Un| £—37 77 =5 (Max| un—tn-1] )%
X ’ 1_b’m(41+c) -



108

This shows that there is quadratic convergence if there is convergence at all.
This convergence depends upon the quantity

bk(1+c)?

’ bzgl(l_,_c)(maﬂul—uol)
]———="22 x

4
which by the standard procedures can be shown to be less than one for b sufficiently
small.
And it is also seen that even if the interval 10, b) appears to be too large initially, it
is sufficient for convergence that max| u(x) —w(x)| is sufficiently small.
X
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