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Concerning to the study of the closed graph theorem, T, Husain [1] discussed the
B (€)-spaces defined as follows:

Definition 1. Let € denote a fixed class of locally convex Hausdorff topological
(abbreviated to l.c. ) spaces. An l.c.space E is said fo be a B (G)-space if, for each
lc.space F =6, a linear continuous and almost open mapping f of E onto F is open.
If f is one-to-one, then E is called a Br (€)-space,

In particular, when € is the class of all 1 c. spaces, a B(€)-space is nothing
more than a B-complete (fully complete) space [4]. In [1] T. Husain discussed the
properties of B(Z)-spaces, where ¥ denotes the class of all barrelled spaces.

The purpose of this note is to show how the theorems of [1] and [2] can be
more extensively applied to the case where € is a class of J-symmetric spaces,

First we need some definitions and simple results,

1. Let Eu. be a linear space E endowed with the topology # and let ¥ be a class
of bounded subsets of E» whose union is E. Let E’ denote the topological dual of E..
and let E’s be the linear space E’ with the 1. c. topology of uniform convergence on
all members of 3 (abbreviated to S-topology). E’, considered as an I, ¢, space,
denotes the dual of E with ¢ (E’, E)-topology.

Definition 2. A#n I.c. space E. is said to be 3-symmeltric if any of the following
equivalent conditions hold:

(1) Every barrel in E. which absorbs every member of 3 is a neighbourhood of

zero,

(2) Every bounded subset of E's is equicontinuous,

(3) The topology induced on E by the strong dual of E's is the original topology

of E.u.
(4) Eu has the relatively strong topology v (E',E), and every convex bounded
subset of E's has compact closure in E'.

The equivalence of these conditions was proved in [5]. If 3, C 3, it is clear
that 3-symmetry implies J3,-symmetry; the strongest restriction on E. is obtained by
taking for ¥ the class of all subsets of E. consisting of a single point, and then X-
symmetry is simply the property of being barrelled. If 3 is the class of all bounded
subsets of E., the Y-topology is called the strong topology on E’ and we have the
weakest Y-symmetric property, which is that of being quasi-barrelled.

Let Eu and F» be two 1 c.spaces. Let f be a linear continuous mapping of E.
onto F», Then, if 5 is a class of bounded subsets of E. whose union is E, the class
f(Z2) of all f(S), S 5 is also that of bounded subsets of F, whose union is F.
Therefore we can define on F' the f (X)-topology.



Lemma 1. Let E. and F, be two I c.spaces. Let f be a linear continuous and
almost open mapping of Eu. onto Fo, If Ey is J-symmetric, F» is f (3)-symmetric.

Proof. Let B be a barrel in F, which absorbs every member of f(5). Since f
is linear, f-!(B) is convex and circled, and it absorbs every member of 3. Further,
as f is continuous f-* (B) is also closed. Therefore f-! (B) is a u-neighbourhood of
0, because E. is @ J-symmetric space by hypothesis. Now as f is almost open,
F(f(B))=B=B is a v-neighbourhood of 0. This proves the lemma.

Corollary 1. Let u and v be two 1. c. tepologies on a same linear space E and let
i be the identity mapping of E. onto Es, Further let i be continuous and almost open.
Then, if E. is Z-symmetric, so is Eo.

Corollary 2. Let M be a closed subspace of an l.c. space E. and let ¢ be the
natural mapping of Eu onto Eu/JM. Then if Eu is 3-symmetric, E,/M is ¢ (Z)-symmetric.

Now we define the B (J)-spaces as follows:

Definition 3. Let Eu be an I c.space and let 3 be a dlass of bounded subsets of
E. whose union is E. Then E. is said to be a B (X)-space if and only if every con-
tinuous and almost open mapping f of Eu onto an f (3)-symmetric space Fo is open.
If f is one-to-one then E. is called a Br (X)-space.

In particular, when ¥ is the class of all subsets of E consisting of a single point,
then obviously a B (J)-space is nothing more than a B (%)-space. Therefore our
notion of B (ZX)-spaces contains as a particular case that of B (%)-spaces.

9. In [4], a characterization of a B-complete space in terms of the subspace of
its dual was given, We give in this section a similar characterization of a B(X)-space.
" A set Hin the dual E’ of an 1. c.space E. is equicontinuous if and only if there is
a u-neighbourhood U of 0 in Eu. such that Hc U°, Let @ be a subspace of E’
with the relative o (E', E)-topology. A set H in Q is said to be equicontinuous if it
is equicomntinuous in E’. '

Definition 4. A subspace Q of E', when Q is endowed with the relative o(E', E)-
topology, is said to be Z-boundedly complete if the following conditions are satisfied:

(a) @ is almost closed, i.e.for each u-neighbourhood U of 0 in E.. Q N U° is

closed in E'.
(b) Every bounded set of Q with respect to the relative 3I-tupology (abbreviated to
a S-bounded set) is equicontinuous.

Then it is easy to show that every JI-boundedly complete subspace is quasi-
complete, Now we get the following theorems,

Theorem 1. A mnecessary and sufficient condition for an [ c space E. to be a
By (3)-space is that each dense S-boundedly complete subspace Q of E' coincides with E'.

Proof. For the ‘necessary’ part, assume that E. is a Br (X)-space. The density
of @ implies @' = E. Let v denote the &-topology on E, where & consists of all
Y-bounded sets of Q. TFirst we show that v = 7 (E, Q). Since the topology ¢ (@, E)
coincides with ¢ (E',E) on Q; a ¢(Q, E)-compact convex circled subset C of @ is
6 (E',E)-compact in E'. Therefore C is strongly bounded in E’ (see, for example,
[3] p.170, 18.5) and hence S-bounded. In other words, the class of all ¢ (@, E)-
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compact convex circled subsets of @ is included in &, Hence v D7 (E, Q). On the
other hand, according to (a) of Definition 3, for each convex circled #-neighbourhcod
Uof 0, (N U°) is a r(E,Q)-neighbourhood of 0. But according to (b) of
Definition 3, for each X-bounded set B of @, BC Q N U° implies B° D (Q N U°)°,
This shows that v C 7 (E, Q). Combining the two inclusion relations we have v =
7 (E,Q). Since @ is quasi-complete, it follows by (4) of Definition 2 that E, is a
2-symmetric space. Now we show that # D v, For each v-neighbourhood V of 0,

there exists a Y-bounded set B of @ such that B°C V. But as @ is S-boundedly
complete, (b) of Definition 4 implies BC U° for some #-neighbourhcod U of 0 in E,
But then VD B° D U°° o U implies #Dv. This shows the continuity of the identity
mapping ¢ of E. onto E»,, Furthermore, for each convex circled #-neighbourhcod U
of 0, 7(0) is a barrel in E, which absorbs every member of ¥, and is therefore a
v-neighbourhood of 0 by the Y-symmetry of E,. This shows the almost openness of
i. Consequently ¢ is a continuous and almost open mapping of Eu onto a 3-symmetric
space E»,. Hence 7 is open because Eu. is a Br (3)-space, Therefore # = v and hence
Q =E,’ = E.', The ‘sufficient’ part is an obvious modification of the proof of
Theorem. 1 of [1].

A similar characterization for B (Y)-spaces is as follows.

Theorem 2. A necessary and sufficient condition for am . c.space E. to be a
B (X)-space is that each 3-boundedly complete subspace Q of the dual E' of E is
o (E', E)-closed,

Proof. For the ‘necessary’ part, let ¢ be the natural mapping of E onto Q' =
E/Q°. Let v denote the G-topology on @', where & consists of all S-bounded sets
of @. As shown in Theorem 1,Q’'° is ¢ (J)-symmetric because @ is quasi-complete
and v = 7 (@',Q). The continuity of the mapping ¢: E.— Q' can be shown in the
same way as in the proof of Theorem 2 of [1]. Furthermore, for each convex circled
#-neighbourhood U of 0, ¢ (U) is a barrel in Q'® which absorbs every member of
¢ (2) and is therefore a v-neighbourhood of 0 by the ¢ (3)-symmetry of Q. This
shows the almost openness of ¢, Then, as E. is a B (JX)-space, ¢ is open. In other
words, @ = Q. This implies @ is ¢ (E’. E)-closed. The ‘sufficient’ part is again
an obvious modification of the proof of Theorem 2 of [1].

3. In this last section we shall show the closed graph theorem for Br (X)-
spaces, First we state the following theorem for a time.

Theorem 3. Let F. be an I c.space and E. a X-symmelric Br (X)-space. Let f
be a linear mapping of Fv into Eu, the graph of which is closed in F x E. If f is
almost continuous, then f is continuous,

Proof. Making use of the Corollary to Lemma 1, we get the proof as an obvious
modification of the proof of Theorem 5 of [1].

But this theorem is merely a different version of Theorem 3.8 of [4] as is
shown by the next Lemma 2. The circumstance is the same as was pointed out in [2].

Lemma 2. A= [.c. space E. which is both a X-symmelric space and a Br (ZX)-
space is Br-complete.



Proof. Let @ be an almost closed dense subspace of.the dual E'.of E. -Let B
be a.ZX-bounded subset of @, where @ is endowed with the relative ¢ (E', E)-topo-
legy. - Then B is o (E',E)-bounded in E' and hence equicontinuous since. E is
2-symmetric. This shows that @ is -boundedly complete, But then E being a
Br (X)-space, it follows that @ is o (E', E)-closed, and therefore E. is Br-complete
due to the characterization of the latter space in [4].

The following theorem is an improved one.

Theorem 4. Let Eu be a >-symmetric space and Fs a Br (f (3))-space. Let f be
a linear mapping of Eu onto Fo the graph of which is closed in E x F. If f is almost
open and almost continuous then f is comtinuous. C

Proof. We give an outline of the proof. For the detail, see the corresponding
proof of Theorem 3 of [2]. Let {V} denotes a fundamental system of closed convex
and circled neighbourhoods of 0 in F.., For each Vin {V}, let I}G=WZWT Then
{f}} forms a fundamental system of neighbourhoods of 0 in F under an I c. topology
w (The closedness of the graph of f implies that w is Hausdorff). Since the mapping
f i Eu— Fy is known to be continuous and almost open, F. is a f(ZX)-symmetric
space by Lemma 1. On the other hand, the identity mapping i : F»— Fy» is also
continuous and almost open. Therefore, it follows that i is open, because F» is a
Br (f(Z))-space. Hence v = w. Since f : E» — Fy, has been proved to be continuons,
f: E,— F, is continuous,

We get from this theorem the following one,

Theorem 5. Let Ey be a Z-symmetric space and let g be a linear almost continmous
and almost open mapping of an I c. space Fy onto E. with the closed graph. If
F,/g*(0) is a Br (X)-space, then g is open.

Proof. It can be assumed that g is one-to-one, Hence g! : E, — F, exists and
it is almost continuous and almost open, because g is almost open and almost con-
tinuous. Therefore Theorem 4 is applied and hence g! is continuous, This shows
that g is open.

The following theorems of [2] are immediate corollaries of Theorems 4 and 5.

Theorem §. Let E. be a .barrelled space and F» a Br(X)-space. Let f be a
linear mapping of Eu onto F. with the closed graph. If g is abmost open, then f is
continuous.

For the proof, notice that a linear mapping of a barrelled space onto an I, ¢, space
is always almost continuous,

Theorem 7. Let E. be a barrelled space and F, a Br (X)-space. Then a linear
almost continuous mapping g of Fu onto Eu with the closed graph is open.

For the proof, notice that a linear mapping of an I.c. space E onto a barrelled
space F is always almost open and that a quotient space of a Br (Z)-space is also
a Br (%) -space,

The last theorem is another characterization of By (X)-spaces.

Theorem 8. Let Eu be a S-symmetric space. Then E. is a Br (3)-space if and
only if any one-to-one linear and almost open mapping f of E onto a f(2)-symmetric
space Fy with the closed graph is open.
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Proof, Assume E. is a Br (Z)-space. Then according to Lemma 2 and Theorem
(3.6) of (4], f is open. On the other hand, if f is a one-to-one continuous and
almost open mapping of Eu. onto any f (J)-symmetric space F», then the graph of
f is closed in E x F and therefore f is open by assumption. Therefore Eu. is a
Br (X)-space.
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