— 06 —

On the (p,, p)-Asymptotic Stability of the System
of Differential Equations

Masamichi Aso, Miki KUuDO and Shoichi SEINO*

(Received on 30, November, 2001)

1. Introduction

It is well-known that, in 1892, A. M. Liapunov discussed the stability of solutions of the system of
ordinary differential equations by utilizing the scalar function satisfying certain conditions.

Liapunov’s second method is a very useful and powerful instrument in discussing the stability.
However, even though the construction of the Liapunov function V (¢ x) is an art, it is difficult to find
the Liapunov function satisfying some conditions. Therefore, it is important to obtain the weak
sufficient condition for the stability theorem.

The stability property can be considered as a family of properties depending on some parameters.
Consequently, when we employ a single Liapunov function to prove a given stability property, the
Liapunov function used is assumed to play the role for every choice of these parameters. As a result,
if we utilize a family of Liapunov functions instead of one, it is natural to expect that each member of
the family has to satisfy weaker conditions. This is a precise idea using a family of Liapunov functions
and the advantage is more clearly seen in the case of uniform stability properties. (cf. [3], [7], [10])

There are several different concepts of stability. To unify these varieties of stability notions and
offer a general framework for investigation, it is convenient to introduce stability concepts in terms of
two different measures.

In [6], the idea of perturbing Liapunov functions is introduced which is useful in the study of non
uniform stability under weaker conditions.

In 1989, V. Lakschmikantham and Xin Zhi Liu have discussed the new non uniform stability, which
they called the (po, p)-stability and the (p,, p)-asymptotic stability, employing perturbing families of
Liapunov functions.

In this paper, by using Liapunov’s second method, we will state some generalization of the sufficient
conditions for the (p,, p)-asymptotic stability of the system of ordinary differential equations.

2. Notations and Definitions

First, we summarize some basic notations and definitions we will need later on.

Let I denote the interval 0 < ¢ < oo, R" denote Euclidean n-space. For x € R”, let | x| be any norm
of x and denote by Sy the set of x such that |x|< H, H > 0.

We shall denote by C (I X R”, R™) the set of all continuous functions defined on I X R” valued in
R

Let us list the following classes of functions for convenience.
K ={c& C(,I); o(r) is strictly increasing and ¢ (0) = 0}.
CK ={c&eCUXI,I);c(t ) EK for each tEI}.
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r={pECUXR" R) ;jg];"p(t, x) = 0 for each t E1}.
S .p) ={(t, x); p(t, x) <p}

We consider the system of differential equatibns
(1) =1, %),
where f € C(S(p, p), R™) and f (¢, 0) =0.

Suppose that f (¢, x) is smooth enough to ensure existence, uniqueness and continuous dependence
of solutions of the initial value problem.

Throughout this paper, the solution through a point (%, %) € I X R”will be denoted by such a form
as x (¢, &, %).

[Definition 1] Let po, p ET'. Then we say that p, is finer than p if there exist a p > 0 and a function
& € K such that p,(t, x) < p implies p (¢, x) < ¢ (po(t, x)).

[Definition 2] The system (1) is said to be (o, p)-stable if any € > 0 and any b € I, there exists a
o (ty, &) > 0 such that po (b, %) < 8(t, ) implies p(t, x (¢, by, %)) < & for all t = 4.

[Definition 3] The system (1) is said to be (po, p)-asymptotically stable, if the system (1) is
(po, D) -stable and if therve exists a & (f) > 0 such that if po(ty, %) < & (k), p(¢, x(t, b, %))—0 as

t >0,

[Definition 4] The zero solution of (1) is said to be stable if for any € > 0 and any t, € I, there exists
a 6(t, &) > 0 such that %)< 64, &) implies |x(t, b, %)< & for all t = t.

[Definition 5] The zero solution of (1) is said to be uniformly stable if & of Definition 4 is indepen-
dent of .

For V&€ C( XR" I), we define the function
V(b 5 = limsup 3V (¢4, 2+ hf (2, 9) =V (£, 2)}.

In case, V (¢, x) has continuous partial derivative of the first order, it is evident that

I}(t, x)(l) = aa_I;-l_%Z_ * f(t) x))

where “e” denotes an inner product.

[Definition 6] Let VE CUXR" I) and p ET. Then V is said to be weakly p-decrescent if there
exist a po > 0 and a function ¢ € CK such that
p(t, x) < po implies V (t, x) < ¢ (¢, p(t, x)).

Remark : If p (¢, x) = lxll, po (¢, x) = lxll, then the (po, p)-stability reduces to the well-known stability
of the zero solution, and the (p,, p)-asymptotic stability reduces to asymptotic stability of the zero
solution.

Also, if p (¢, %) = lxl. (1 £ £ < n;k, n:positive integers), p, (¢, x) = |x[, then the (po, p)-stability
is the partial stability of the zero solution, where |x|, is a norm of some partial components of x.
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3. Preliminary Results

In 1989, V. Lakschmikantham and Xin Zhi Liu gave a sufficient condition for the (p,, p)-stability
and the (p,, p)-asymptotic stability. We repeat these theorems.

[Theorem 3. 1] Assume that
(A1) po, p E I' and p, is finer than p,
(A2) Vl e C(S®, p), I), Vi(t, x) is locally Lipschitzian in x, weakly p,-decrescent, and
Vi(¢, x)(l) =g (t, Vi(t, x),
where g € C(I X1, R) with g (¢,0) =0,
(A3) for any n > 0, there exists a V,, & C(S(p, p) N S¢(po, 1), I), where S¢(po, n) is the complement
of S(po, ), V2, (t, x) is locally Lipschitzian in x,
a(p(t, x)) = Vi (t, x) < b(pe(t, x)) on S(p, p) N S(po, 7),
whevre a, be K and
Vi(t, x)(1)+ qu(t, x)(l) =&t Vit x)+ Vo, (t, %)) on S(p, /J) N S (po, 77),
where g, & C (I X1, R) with g,(¢,0) =0,
(A4) the zero solution of the scalar differential equation
u =g (t, u), ull, to, ) = 1o 20
is stable, and the zero solution of the scalar differential equation
v'=g(tv), vy, by, ) =1, 20
s uniformly stable.
Then the system of differential equations (1) is (p,, p) -stable.
[Theorem 3.2] Assume that
(B1) po, pE I" and p, is finer than p,
(B2) i C(S(p, p), I), Vi(¢, x) is locally Lipschitzian in x and weakly po-decrescent,
(B3) for any n >0, there exists a V., & C(S(p, p) N S(po, ), I),
Vo, (¢, x) is locally Lipschitzian in x and
a(p(t, x)) = V3, (t, x) < b(po(t, x)) on S(p, p) N S(po, 7).,
where a, beK am{
Vilt, ©) oyt Vi (8, 2) oy < g (¢, Vi(t, x) + Vo, (8, ) on S(p, p) N S(po, 7),
where g & C(IXI, R) with g(t, 0) =0,
(B4) the zero solution of the scalar differential equation
w =gt u), ull, to, ) = 1t Z 0
is uniformly stable,
(B5) there exist two functions Vs & C(S(p, p), R), V,E C(S(p, p), R)
such that 'V, = Vy+ V,, where V,(t, x) is p-positive definite and
I}l(t, ) = —A(t)c(Vs(t,x)) on S(p, p), where c EK and A & C(I, 1) is integrally positive,
that is,

f! A(s)ds = o whenever J = f__jl AR

a; < ﬁ,‘ < Qi1 and ﬁi_az' 240> 0,
(B6) for evry function y & C (I, R"), the function

-[0[[.[}4(5‘:3/(3))]:‘13

is uniformly continuous on I, wherve []. means that either the positive or negative part is consideved
for all sE I
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Then the differential system (1) is (po, D) -asymptotically stable.
For proof of these theorems, see [1].

In 2001, we proved the following theorem.
[Theorem 3.3] Suppose that
(C1) po, p E I and po is finer than p,
(C2) for any n > 0, there exists a function W, & C(S(p, p) N S(po, 7), I)
such that W, (t, x) is locally Lipschitzian in x and
a(t, p(t, x)) = Wy (t, x) < b(po(t, x)) on S(p, p) N S (o, 7),
where a(t, v) is continuous in (t, r), increasing with respect to t for each fixed 7,
a(t, r) >0 for »r +0 and a(t,0) =0, b(») is continuous, increasing, b(r) >0
for v >0, b(0) =0 and S°(po, n) is the complement of S(po, 7),
(C3) there exists a function V & C(S(p, p), I) satisfying the following properties ;
V(.t, x) is locally Lipschitzian in x, weakly p,-decrescent and
V(t, x)oy = &(t, V(¢ %)),
where = C(IXI R) and g,(¢,0) =0, and
V(t £yt W/Zr/(t 2o = &(8 V (¢, x)+ W, (¢, %)) on S(p, p) N S(po, 7),
where g, & C(IXI, R) and &(t, 0) = 0.
If the zero solution u = 0 of the scalar differential equation
w =gt u), ul, b, ) = ty, 9o 20
is stable, and the zero solution v = 0 of the scalar diffevential equation
v =gt v), vk, t, 1) = 0, 20
is uniformly stable, then the system of differential equations (1) is (po, p) -stable.
For proof of this theorem, see [2].

4. Main Result

We utilize the ideas of L. Hatvani. (cf [3], [4])

[Theorem 4] Suppose that
(i) po, p E I and p, is finer than p,
(i) for any n >0, there exists a function W,, & C(S(p, p) N S(po, ), I), where S°(p, ) is the
complement of S(pe, 1), Wo,(t, x) is locally Lipschitzian in x and

a(t,p(t, x)) = Wy,(t, x) < b(po(t, x)) on S(p, p) N S (b, 7),
where a(t, v) is continuous in (¢, v), increasing with respect to t for each fixed 7,

a(t, 7) >0 for r + 0 and a(t,0) =0, b(r) is continuous, increasing, b(r) >0
for v + 0 and b(0) =0,
(iii) there exists a function V & C(S(p, p), I) satisfying the following properties; V (t, x) is locally
szschztzzan n X, weakly Po-decrescent and

V(t £t I’Vzr,(t 2o = gt, V(t, x)+ W, (¢, x)) on S(p, p) N S (b, 7),
wherve g& C(IXI, R) and g(t, 0) =0,
(iv) there exist two functions Vi E C(S(p, p), R), Vo€ C(S(p, p), R) such that V = Vi+ V,,
a (t, p(t, x)) < Vi(t, x), where a(t, ) is continuous in (t, v), increasing with respect to r for each
fixed t, a(t, v) >0 for » # 0 and a(t,0) =0, and

I}(t, 2y = —A(t)c(Vi(t, x)) on S(p, p), where c E K and L € C(I, I) is integrally positive,
that is,
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f, A(s)ds = o  whenever | = g las, B:],

a; < ﬁ,’ < Aiy and ,Bl-—a/i = 0> 0,
(v) for evry function y € C (I, R"), the function

fol[l}z(s,y(S))]: ds

is uniformly continuous on I, where []. means that either the positive or megative part is considered
for all sE€ L

If the zevo solution u = O of the scalar differential equation N
(2) u =g(t, u), ully, to, o) = o, o 20
is uniformly stable, then the system of differential equations (1) is (po, p) -asymptotically stable.

Proof. Since (iv) implies that I}(t, X))oy = 0on S(p, p),
all assumptions of Theorem 3.3 are satisfied. Then the system of differential equations (1) is
(o, D) -stable.
Choosing € = p and designating by 6, = & (p, &) > 0, it is clear that
(3) po(ty, %) < & implies p (¢, x(t, b, %)) < & for all ¢ = &,
Let x(t, &, %) be any solution of (1) satisfying (3). Difine the functions m (t) = V (¢, x(t, t, %)),
m(t) = Vi(t, 2(¢, b, %)) and m, (t) = V,(¢, x(¢, b, %)), so that m (¢) = m, (¢) +m,(2).
Assumptions (iii) and (iv) yield that m (¢) is nonincreasing and bounded from below, therefore
lim m(¢) = ¢ < oo,
o We claim that hmlnf my (t) = 0.
If this were false, there would exist a 8 > 0 and a T > £, such that
(4) m(t)y 2B forallt =T
By (iv) and (4), it follows that
m(t) < —A(t)c(m(t)) < —A(8)c(B) for all t = T
Thus, for J = g [@;, B:] such that T < &; < B; < a1 and Bi—a; = 8 > 0,
we get

lim m (1) < m(T)—c(8) f 1 (s)ds < m(T)—c(8) [ A(s)ds = —co,

which is a contradiction.
Next, we claim that llmsup my (t) = 0.
Since my, (¢) 2 0, suppose that llmsup m, () > 0. Then there exists a y > 0 such that
lirlrliup my () > 3.
Since lim m (¢) = ¢ < co and m (¢) is continuous and nonincreasing, there exists an M > 0 such
that o
(5) o=m(t) < oty forall t 2+ M. .
For definiteness, suppose that assumption (v) holds with [¢],.
Since m, (¢) is continuous, we can choose a sequence {&;} and {z;} such that, for i = 1, 2,
Lh+M < &' <m< 5i+1,
(6) m, (&) =3y, mi(zm:) =y and y < m, (t) < 3y for all t E[&,, =.].
From (5) and (6), it is easy to see that
(7) m (&) —m, (&) = =2y, m(n) —m(x) 2 o—Y.
Since m, (¢) = m (t) —m, (), it follows from (7) that

0 < y= my(m) —my (&) =f; [ (s) ]2 ds,

FR144E 2 B



— 101 —
On the (po, p)-Asymptotic Stability of the System of Differential Equations

which shows by (v) that there exists a d > 0 such that
(8) 7z,-—§,- > d > 0, Z= 1, 2,
By (6), (8) and (iv), we get

lim m (f) < m(to+M)—c(y)f°: A(s)ds < m(to+M)—c(y)/] A(s)ds = —o0

t —o0

where ] = U (&, =],
which leads to a contradiction.
Then we have hm my () = 0.
Since properties of a function Vi(¢, x), we get p(¢, x(¢, &, %))— 0 as t—o.
Thus we can conclude the system of differential equations (1) is (s, p)-asymptotically stable.
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