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1. INTRODUCTION

Let (M, g,]) be a Hermitian manifold of dimension 2%, where ¢ is a Riemannian metric and J an
almost complex structure. It is known that there is a unique linear connection D of M such that Dg =
0 and D/ = 0 and that the torsion tensor 7T satisfies T (JX, Y) = T(X,JY), where X, Y are any
vector fields on M (cf. [7]). The linear connection D is called the Hermitian connection. The
Hermitian connection D is given by
(1) 29(DxY,Z) =29(VxY,Z)+9(T(X,Y),Z)—9(T(Y,Z),X)+9(T(Z,X), Y),
where V is the Levi-Civita connection of ¢ (cf. [5], [8]). Let { X, ..., X, JXi, ..., JX.} be an orthonormal
basis of T,M. A Hermitian manifold (M, g, J) is said to have an Einstein-Hermitian structure if
@) Ric®(X,Y): = 3 R (X,]JY, X, JX) = ag(X, ¥),
where « is a function on M (cf. [4]).

We define the fundamental 2-form Q by Q(X,Y) = g(X,JY). Let w be the Lee form, i.e, w =

%__1 dQ O J and B the Lee vector field dual to w with respect to g. We define the Weyl connection
D of (9,]) by
3 DiY = VY —50(X) Y —2w(Y) X +9(X, Y)B.

The Weyl connection D is independent of the choice of g in the conformal class [¢]. A Hermitian
manifold (M, [¢], ], D) with the Weyl connection D is called a Hermitian-Weyl manifold. A Weyl
manifold (M, [g], D) is said to be Einstein-Weyl if

(4) Ric® (X, Y)+Ric°(Y,X) =p9(X,Y),

where g is a function on M and Ric®(X, Y) = trace of map Z — R°(Z, X) Y.

It is known that there is a unique metric g, up to a constant, in the conformal structure of a compact
Einstein-Weyl manifold with respect to which the corresponding 1-form @ is co-closed. Furthermore,
Tod demonstrated that this co-closed 1-form turns out to be the dual of a Killing vector field (cf. [14]).

In [4], Gauduchon and Ivanov proved the following two facts for Hermitian manifold (M, g, J) of
dimension 4 :

1. (g, J) is an Einstein-Hermitian structure if and only if ([¢g], /, D) is an Einstein-Weyl structure.
2.1f (M, g,]) is a compact Einstein-Hermitian manifold, then :

(i) either (M, g, J) is Einstein-K&hler, or

(ii) (M, g) is locally isometric to R X S3.

In this paper, we consider a Hermitian manifold (M, g, J) of dimension 2% > 4. And we prove the
following results.

Partially supported by Grant-in-Aid for Scientific Research (No. 10640098), Ministry of Education,
Science and Culture, Japan.

KEEEFRICEREMT



— 114 —
Fumio NARITA

Theorem 1. Let (M, [g],], D) be a Hermitian-Weyl manifold of dimension 2n > 4 and satisfies D =
0. Then (9,]) is an Einstein-Hermitian structure if and only if ([g], ], D) is an Einstein-Weyl structure.

Theorem 2. Let (M, [g],],D) be a compact Hermitian-Weyl manifold of dimension 2n > 4 and
satisfies D] = 0. If (g9,]) is an Einstein-Hermitian structure, then :

(i) either (M, g,]) is Einstein-Kihler, or

(ii) M has the first Betti number b, (M) = 1 and the universal covering manifold of (M, g) is isometric
to RXN®* 1 where N*"~' is a simply connected Ricci positive Einstein manifold, moreover, (M, g,]) is
a generalized Hopf manifold and N*"' is a Sasakian manifold.

Remark. If (M, [g],/, D) is a Hermitian-Weyl manifold of dimension 4, then we have dQ = w A Q
and so DJ = 0 but w is not necessarily closed (cf. [17]).

2. PRELIMINARIES

Let (M, [g],], D) be a Hermitian-Weyl manifold. From (1) and (3), we obtain
(5) 29(DxY, 2) = 29(DxY, Z) +w(X)g(Y, Z)+w(Y)9(X, Z) —w(Z)g(X, Y)
+9(T(X,Y),2)—9(T(Y,2),X)+9(T(Z,X),Y).
Since the almost complex structure / has no torsion, using DJ =0 and T(JX,Y) = T(X,JY), we
obtain T(JX,Y) =JT(X, 7).
Thus, from (5), we have

® (D) (Y,2) = (B0 (Y, 2) +0(X)Q(Y, 2) —30(¥)gUX, Z) —5w(Z)g(X, )
—20(2)9(X,JY) +50(Y)g(X, 2)+¢(T (Y, 2), JX).

Lemma 1. On a Hermitian-Weyl manifold (M, [g],], D), the following conditions are equivalent :
@) DJ =0,

(i) dQ=w A Q,

(iii) Dx Q@ = w(X)Q,

(iv) DyY = DxY+%a)(X) Y—%w([X) Y.

Proof. By a Theorem of Vaisman [16], we have the equivalence of (i), (ii) and (iii).

Now, we prove the equivalence of (iii) and (iv).

We assume that Dx Q = @w(X)Q. Since Dg = 0 and DJ = 0, we obtain Dx Q = 0. Hence, from (6)
we have

@ 9(T(Y,2),X) =50(Y)g(X,2) —+oU2)eUx, ¥)—~w0(2)g(X, V)

+20(¥)gUX, 2).
By using (5), from (7) we obtain
" ® DiY = DiY +50(X) Y ——0(X)]Y.

Conversely, assume the condition (8). Since T(X,Y) = DyY —DyX—[X, Y] and D is torsion-
free, we obtain (7). From (6), we have Dx Q = w(X)Q. [
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The curvature tensor R of the Levi-Civita connection V defined by R(X, Y)Z = [Vx, Vvl Z—Vix.r; Z.
Weset R(V,Z,X,Y) =¢g(R(X,Y)Z, V). Let R’ and R® be the curvature tensors of D and D
respectively. By a simple calculation, from (1) and (3), we have

Lemma 2. (i) R°(V,Z,X,Y)=—-R(V,Z,Y,X),

() R2(V,Z,X,Y)+R(Z, V,X,Y) = —2dw(X, Y)g(Z, V),
(i) R2(V,Z, X, Y)+R(V, X, Y, Z)+R°(V,Y,Z, X) =0,
(ivy R(V,Z,X,Y)=—-R(V,Z, Y, X),
VWR(V,Z,X,Y)=—-R(Z V,X,7Y),

(ivi R°(JV,JZ, X,Y)=R(V,Z,JX,JY) =R(V,Z,X,Y),
where 2dw(X,Y) = Xw(Y)—Yw(X)—w([X, Y]).

3. PROOFs

Proof of Theorem 1. From (iv) of Lemma 1, we obtain

(9) R(V,Z,X,Y)=R(V,Z,X,Y)+9(V,Z)dw(X,Y)—Q(V,Z)d8(X,Y),

where 8§ = w0O J (cf. [17]). Since DJ =0, we have R°(JV,JZ, X, Y) = R°(V,Z,X,Y). Using
Lemma 2 and (9), we obtain

n

Ric®*(X,Y) =2 (RP(X, Y, X, X)+R°(JX,, Y, JX;, X))

i=1

=

=3 (RUY,JX, X, X)+R°(JY, X, JX, X)) +2d(X, Y)
= -2 R°UY, X, X, JX)) +2d0(X, Y)
=3 (R(X, JY, X, JX) +de (X, JX)g(X,]Y) +d8 (X, JX)Q(X, ]Y))
+2dw(X, ¥)
= Ric®(X, ¥) +3} do(X,, JX)g(X,J¥) =3} d6 (X, JX)9(X, ¥) +2d0(X, ¥).
Thus we obtain
W Ric®(X, Y)+Ric®(Y, X) = 2Ric® (X, ¥) 2 31 0 (X,, JX)g(X, ¥).

Therefore (g9,/) is an Einstein-Hermitian structure if and only if ([g],/, D) is an Einstein-Weyl
strucuture.

Proof of Theorem 2. From Theorem 1, (M, [g], ], D) is a compact Einstein-Weyl manifold, thus we
can choose a Riemannian metric ¢ such that éw = 0 and Lee vector field B is Killing. In the case where
dimension of M is 4, this Theorem has been gave by Gauduchon and Ivanov (cf. [4]). We assume that
dim M > 6. From (ii) of Lemma 1 and dim M > 6, @ is closed. So @ is harmonic and parallel with
respect to the Levi-Civita connection V of g. Since Vw = 0, |@| is constant. Since (M, [g],/, D) is an
Einstein-Weyl manifold with the Killing vector field B and |w| is constant, s ° is constant, where s*
is the scalar curvature of the Weyl connection D (cf. [3], [6]).
Since (M, [g], ], D) is an Einstein-Weyl manifold from (3), we have

0  Rie(X,Y) = 5-s20(X, V) + 25 (|0l (X, ) —e(X)e(V)),

where Ric is the Ricci curvature of the Levi-Civita connection V (cf. [12]). Thus we obtain Ric(w) =
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% s Pw. Since the dual of w is Killing, we have V*Vw = Ric (w) (cf. [1] p. 41). So we have V*Vw =
% s ®w. We integrate over M the scalar product of V*V@ with w. Then we obtain [, |Vw|?*dV, =

1

2n

s?|w|? f,, dV,, where dV, denotes the volume element with respect to g. Since w is parallel, we

obtainw=0o0r s®?=0.

and

In the case where w = 0, since VJ = DJ =0, (M, g,]) is an Einstein-Kdhler manifold.
In the case where s = 0, from (11), for any tangent vector field X orthogonal to B, we obtain
Ric(B,B) =0, Ric(B,X) =0

Ric (X, X) = "5 ol (X, X).

By the splitting theorem on nonnegative Ricci curvature (cf. [1], [2]), the universal covering manifold
of (M, g) is isometric to RX N?*! where N2" ! is a simply connected Ricci positive Einstein manifold.

Since w is harmonic and the Ricci curvature is nonnegative, using the Weizenbtck formula, we

obtain & (M) =1 (cf. [12], [6]).

Since dQ = w N Q and w is parallel, (M, g,]) is a generalized Hopf manifold (in terminology of

Vaisman). Since N?"*! is orthogonal to the Lee vector field B, N?*~! is the universal covering space
of a leaf of the canonical foliation defined by @ = 0. From a Theorem of Vaisman [15], N2"'is a
Sasakian manifold.
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