局部加熱面・冷却面を有する容器内の水の

(

自然対流熱伝達に関する数値解析

細川 純*・佐々木 章

Numerical Analysis on Heat Transfer of Water in Enclosures with Partial Heating and Cooling Walls

Jun HOSOKAWA and Akira SASAKI

(1998年11月30日受理)

Heat transfer of water have been investigated in an enclosure with partial heating and cooling walls by numerical analysis. As a physical model, a two-dimensional vertical enclosure is considered. The enclosure is H in height and W in width, and partial heating and cooling walls are H/2 in height. Aspect ratio is 1. The heating wall temperature is changed from 2°C to 20°C. The cooling wall temperature is 0°C.

The effects of the position of heating and cooling walls for the flow pattern and the heat transfer characteristics have been discussed in this report.

1.序 論

矩形容器内における水の自然対流熱伝達特性に関 する研究は、これまで多くの研究者によって実験及 び解析がなされているが^{(1),(2)},それらの研究は加熱 面及び冷却面がいずれも容器側面全体に備え付けら れている場合であり、水の密度が最大となる約4℃ 近傍での熱伝達特性に関して調べられている。しか し、積雪寒冷地においては工場や一般家庭における 管路や水道管などは局部的な冷却によって凍結、破 損等の問題が生じる場合がある。そのため、この種 の問題を解決しなければならないのであるが、あま り研究がなされていない。

すなわち,局部的に冷却面,加熱面を有する場合 の熱伝達特性に関する研究は,電子機器の冷却問題 と関連して行われており⁽³⁾,水のような約4℃で最 大密度を有する場合に関しては,ほとんど研究がな されていないようである。

そのため本研究は、凍結を伴わない場合で、容器 左側面に加熱面を、容器右側面に冷却面をそれぞれ 局部的に、様々な位置に配置した場合の数値解析を 行い、自然対流熱伝達特性について検討を加えた。

* 秋田工業高等専門学校専攻科学生

主要記号

- a:温度伝導率
- *c*:比熱
- g:重力加速度
- H:容器の高さ
- Nu:平均ヌッセルト数
- P: 圧力
- Pr:プラントル数
- R:冷却面位置と加熱面位置の比
- Ra:レイレー数
- T: 温度
- t:時間
- *u*, *v*:*x*, *y*方向の速度
- W:容器の幅
- *x, y*:座標
 - β:体膨張係数
 - θ :無次元温度
 - λ:熱伝導率
 - μ:粘性係数
 - ν:動粘性係数
 - ρ:密度
 - φ:無次元流れ関数

添字

ac:冷却面位置

細川 純・佐々木 章

- ah:加熱面位置
 - c:冷却面
- h:加熱面
- T:温度の関数

2. 数値モデル

図1に、解析を行ったモデルの代表的な物理モデ ルを示す。容器寸法は高さ H,幅 W で H/W = 1とした 2 次元モデルを考えた。容器左側面に加熱面 を,容器右側面に冷却面をそれぞれ局部的に配置し, 加熱面及び冷却面の高さは H/2とした。また,容器 は加熱面及び冷却面を除いてすべて断熱壁で囲まれ ている。

加熱面及び冷却面位置は、容器の底面からそれら の中心位置までの高さで表し、加熱面位置 y_{ah} 、冷却 面位置 y_{ac} とした。また、冷却面位置と加熱面位置の 比を、 $R = y_{ac}/y_{ah}$ とおいた。

解析を行なうに当たり,次のような仮定を導入し た。

①流体は非圧縮, 層流, 2次元である。

②熱物性値は,浮力の項に表れる密度を除き一定 として扱う。

基礎方程式は以下のようになる。 連続の式

初期条件及び境界条件は,次のようになる。

$$t = 0; u = v = 0, T = T_{h}$$

$$x = 0; u = v = 0$$

$$\text{MMM} \Rightarrow \frac{\partial T}{\partial x} = 0$$

$$\text{MMM} \Rightarrow T = T_{h}$$

$$x = W; u = v = 0$$

$$\text{MMM} \Rightarrow \frac{\partial T}{\partial x} = 0$$

$$\text{MMM} \Rightarrow \frac{\partial T}{\partial x} = 0$$

$$\text{MMM} \Rightarrow T = T_{c}$$

$$y = 0, H; u = v = 0, \frac{\partial T}{\partial y} = 0$$

上記の基礎方程式に流れ関数 ϕ^* , 渦度 ω^* を導入 した後、無次元化を行い、コントロール・ボリュー ム法を用いて差分方程式を導いた。容器内の格子分 割は41×41とした。計算は SOR 法を用い、定常状態 になるまで繰り返し計算を行った。なお、浮力の項 に含まれる密度には藤井らの関係式⁽⁴⁾を用いた。ま た計算は、 $\rho^2 g W^3/\mu^2 = 1.03 \times 10^7$ の条件のもとで行 った。

図2に、解析を行なった3種類のケース全9タイ プの物理モデルを示す。いずれのモデルにおいても、 加熱面を左側面に、冷却面を右側面に取り付けてい る。さらに、これらのモデルは、すべてH/W = 1、 $T_c = 0$ °C という条件のもとで計算を行った。加熱 面温度 T_h の範囲は、2~20°C である。

局部加熱及び冷却の場合における平均ヌッセルト 数 Nu は、以下のように定義した。

$$Nu = \frac{W}{\lambda (T_h - T_c) (H/2)} \int_0^{\frac{H}{2}} \lambda \frac{\partial T}{\partial x} dy \qquad \cdots \cdots (6)$$

3.結果と考察

3.1 数値解析手法の検討

加熱面及び冷却面が,それぞれ容器側面全体に設置されている場合を計算し,加熱面温度 T_hと平均ヌ

図3 側面全体加熱及び冷却の場合の数値結果の比較

ッセルト数 Nu との関係を Inaba and Fukuda⁽¹⁾及 び Lin and Nansteel⁽²⁾の結果と比較した。H/W =1, $T_c = 0$ °C という条件である。

ここでは, 平均ヌッセルト数 Nu を次のように定 義した。

結果は図3に見られるように,Lin and Nansteel

の結果とは、 $T_h = 0 \sim 8 \,^{\circ} \mathbb{C}$ で平均ヌッセルト数 Nu にほとんど差がなく、 $T_h > 8 \,^{\circ} \mathbb{C}$ でもほぼ同様の傾 向を示している。 $T_h = 4 \,^{\circ} \mathbb{C}$ の場合は約3%の差で

あり、 $T_h = 20^{\circ} C$ の場合でも約4.5%の差であった。 このことから、本数値解析結果は熱伝達特性の傾向 を良くとらえていることが分かる。

3.2 容器内の水の流れ模様及び温度分布

Case 3の R = 1の場合を代表例として,加熱面 温度を 4 °C から10°C まで 2 °C おきに変化させた場 合の流れ模様及び温度分布を図 4 に示す。左が流れ 模様を,右が温度分布を表す。

 $T_h = 4 \,^{\circ} \mathbb{C}$ の場合の流れ模様を見ると、左側面上 部の加熱面に沿って水が下に向かって流れているこ とが分かる。これは、水が約4 $^{\circ} \mathbb{C}$ で最大密度を持つ ためであるといえる。冷却面で冷却され、密度が小 さくなった水が上昇し、加熱面上で4 $^{\circ} \mathbb{C}$ に暖められ ることによって密度が大きくなり、下降する大きな 反時計方向周りの循環流れを形成する。

 $T_h = 6 \,^{\circ} \mathbb{C}$ の場合, $T_h = 4 \,^{\circ} \mathbb{C}$ の場合と同様な反時 計方向周りの流れになっている。しかし,加熱面温 度が 6 $^{\circ} \mathbb{C}$ になったことで 4 ~ 6 $^{\circ} \mathbb{C}$ の温度領域が加 熱面近傍に現われ,それにより 0 ~ 4 $^{\circ} \mathbb{C}$ の温度領域 における反時計方向周りの流れが若干右側に押し寄 せられていることが分かる。4 ~ 6 $^{\circ} \mathbb{C}$ の領域の時計 方向周りの流れが容器内の左上の隅に存在するが, 流れ関数の値が ϕ min = -9.63×10⁻³ と反時計方 向周りの流れの値に比べ非常に小さいために,図で は省略している。また,反時計方向周りの流れ関数 の値は 4 $^{\circ} \mathbb{C}$ の場合に比べ,小さくなっていることが 分かる。

 $T_h = 8 \,^{\circ} C \, on \# d + c \, O \, on \# d + c \, O \, on \# d + c \, o$

 $T_h = 10^{\circ}$ Cの場合は、時計方向周りの流れが $T_h = 8^{\circ}$ Cの場合よりさらに強くなっていることが 渦の大きさ、流れ関数の絶対値、温度分布から分か 細川 純・佐々木 章

(Case 3 の R = 1の場合)

る。それに対して $0 \sim 4^{\circ}$ C の領域の反時計方向周り の流れは、 $4 \sim 10^{\circ}$ C の領域の時計方向周りの流れに 押されて小さな渦になっている。時計方向周りの流 れにおける流れ関数の絶対値は $T_h = 4^{\circ}$ C, $T_h = 6^{\circ}$ C 及び $T_h = 8^{\circ}$ C の場合と比較して最も大きい値に なっている。

3.3 熱伝達特性

加熱面位置を $y_{ah} = H/4$ に固定し、冷却面位置を R = 1 ($y_{ac} = H/4$), R = 2 ($y_{ac} = H/2$), R = 3($y_{ah} = 3H/4$) と変えて計算した Case 1 の場合 の、加熱面温度 Th と平均ヌッセルト数 Nu の関係 を図5に示す。ただし、図中の Lin and Nansteel の 結果は、図3 で示した加熱面及び冷却面がいずれも 容器側面全体に設置されている場合の結果であり、 比較のために図示した。Case 2 (図7), Case 3 (図 9) の場合も同様である。

図 5 より, R = 1 ($y_{ac} = H/4$)の場合は加熱面温 度 T_h が 0 ~ 8 °C の範囲で Nu が R = 2 ($y_{ah} = H/$

図 5 加熱面温度 T_nと平均ヌッセルト数 Nu の関係 (Case 1)

2), R = 3 ($y_{ac} = 3H/4$)の場合に比べ最も大きく, $T_h = 8$ °C 以上では逆に Nu が最も小さくなってい る。それに対し, R = 3の場合は $T_h = 0 \sim 8$ °C の 範囲で Nu が R = 1, R = 2の場合に比べ最も小さ く, $T_h = 8$ °C 以上では逆に Nu が最も大きな値を 示している。さらに, $T_h = 8$ °C 以上では, 全てのモ デルで Lin and Nansteel の結果より Nu が大きい 値になっているのが分かる。これは $T_h = 8$ °C 以上 の温度条件では,時計方向周りの流れの影響が強く, 冷却面で冷やされた水が容器の底面に沿って流れ, 左側面下部に取り付けられた加熱面に突き当たり, 高さが H/2である局部加熱面だけで加熱されたた めであると思われる。

図 6 に, Case 1 の $R = 1 \ge R = 3$ の 場 合 の $T_h = 4 \ C$ 及び $T_h = 10 \ C$ での流れ模様, 温度分布 を示す。

 $T_h = 4 \,^\circ \mathbb{C}$ では、流れ関数の値は R = 1の場合が R = 3の場合に比べ大きくなっており、R = 1の場 合の流れが強いことが分かる。そのために熱伝達が 良く、Nu が大きくなっているといえる。温度分布を 見ても、R = 1の場合が R = 3の場合に比べ加熱面 及び冷却面付近の温度勾配が大きく、熱移動量が多 いことが分かる。

 $T_h = 10^{\circ} C$ では,流れ関数の絶対値から明らかな ように, R = 3の場合がR = 1の場合よりも流れが 強いことが分かる。そのため、熱伝達が良く、Nuが 大きいと考えられる。温度分布を見てもR = 3の場 合はR = 1の場合に比べ、加熱面及び冷却面付近の 温度勾配が大きく、熱移動量が多いことを示してい

平成11年2月

局部加熱面・冷却面を有する容器内の水の自然対流熱伝達に関する数値解析

図6 流れ模様及び温度分布 (Case 1)

る。また, R = 1の場合の流れ模様では, 冷却部分 に小さい渦ができていることが分かる。これは, こ の部分の流れの温度範囲が $0 \sim 4$ °C であるため水 の密度逆転が起こり, 流れの向きが容器内の大きい 流れと反対になって反時計方向に流れている。この 小さい渦により熱の伝達が間接的になり, 熱伝達の 効率が悪くなっているということも考えられる。 R = 3の場合の流れ模様でも, 右上の冷却部分に非 常に小さい渦ができているが, R = 1の場合の渦よ りは影響が少ないことが流れ関数の値から分かる。

加熱面位置を $y_{ah} = H/2$ に固定し、冷却面位置を R = 1/2 ($y_{ac} = H/4$), R = 1 ($y_{ac} = H/2$), R = 3/2 ($y_{ac} = 3H/4$) と変えて計算した Case 2 の場合 の,加熱面温度 T_h と平均ヌッセルト数 Nuの関係を 図 7 に示す。

加熱面温度が $0 \sim 8$ °C の範囲では, R = 1の場合 の Nu が最も大きく, R = 1/2の場合がR = 1の場 合と近い値になっている。R = 3/2の場合は, この温 度範囲では最も Nu が小さい。 $T_h = 8$ °C 以上の範

図 7 加熱面温度 T_nと平均ヌッセルト数 Nu の関係 (Case 2)

囲では, R = 3/2の場合が最も Nu が大きく, R = 1の場合が R = 3/2の場合と近い値になっている。 R = 1/2の場合が最も Nu が小さい。また, $T_h = 12^\circ$

— 5 —

C以下の温度条件では全てのモデルでLin and Nansteel の結果より Nu が大きい値になっている。

図 8 に、Case 2 の $R = 1/2 \ge R = 3/2$ の場合の $T_h = 4 \ ^{\circ}$ C 及び $T_h = 10 \ ^{\circ}$ C での流れ模様、温度分布 を示す。

 $T_{h} = 4 ° C ~ c t i$, 流れ関数の値は R = 1/2 o場合 が R = 3/2 o場合に比べ大きくなっており, R = 1/2 o場合の流れが強いことが分かる。そのために熱伝 達が良く, Nu が大きくなっているといえる。温度分 布を見ても, R = 1/2 o場合は R = 3/2 o場合に比 べ加熱面及び冷却面付近の温度勾配が大きく, 熱移 動量が多いことが分かる。

 $T_h = 10^{\circ} C$ では、流れ関数の絶対値から明らかな ように、R = 3/2の場合がR = 1/2の場合よりも流 れが強いことから、熱伝達が良く、Nuが大きいと考 えられる。温度分布を見ても R = 3/2の場合は冷却 面付近の温度勾配が特に大きく、熱移動量が多いこ とを示している。R = 1/2の場合の流れ模様では、冷 却部分に温度範囲が0~4℃である小さい渦がで きている。これにより熱の伝達が間接的になり、熱 伝達の効率が悪くなっていると考えられる。また、 R = 3/2の場合の流れ模様には冷却部分に小さい渦 はできなかった。これを Case 1の R = 3の場合と 比較する。温度分布における等温線の位置関係から、 R = 3/2 (Case 2) の場合が R = 3 (Case 1) の 場合より, 容器上部において加熱面から冷却面に向 かう流れが強いことが分かる。そのため、冷却面近 傍での温度範囲が0~4℃である反時計方向周り の流れが生じにくくなり、流れ模様には表れなかっ たのではないかと考えられる。

加熱面位置を $y_{ah} = 3H/4$ に固定し、冷却面位置 を R = 1/3 ($y_{ac} = H/4$), R = 2/3 ($y_{ac} = H/2$), R = 1 ($y_{ac} = 3H/4$) と変えて計算した Case 3 の 場合の、加熱面温度 T_h と平均ヌッセルト数 Nu の関 係を図9に示す。

加熱面温度が 0 ~ 8 °C の範囲では, R = 2/3の場 合の Nu が最も大きく, 次に大きい値になっている のが R = 1/3の場合であり, R = 1の場合はこの範 囲では最も Nu が小さくなっている。8 °C 以上の範 囲を見てみると, R = 1の場合が最も Nu が大き く, 次に R = 2/3の場合となり, R = 1/3の場合が 最も Nu が小さくなっている。さらに $T_h = 8 °C$ 以 下の温度条件では, 全てのモデルで Lin and Nansteel の結果より Nu が大きい値になっており, $T_h = 8 °C$ 以上の場合は R = 1/3 > R = 2/3が Lin

 $T_h = 8$ °C 以上の場合は R = 1/3と R = 2/3が Lin and Nansteel の結果より Nu が小さい値になって

図 9 加熱面温度 T_nと平均ヌッセルト数 Nu の関係 (Case 3)

図10 流れ模様及び温度分布 (Case 3)

いる。これは,加熱面が上部にあるため流れが容器 全体に行き渡らず,対流の強さが小さいためと考え られる。

10

図10に, Case 3 の $R = 1/3 \ge R = 1$ の 場 合 の $T_h = 4$ °C 及び $T_h = 10$ °C での流れ模様, 温度分布 を示す。

 $T_h = 4 \, \mathbb{C}$ では,流れ関数の値は R = 1/3の場合 が R = 1 の場合に比べて大きくなっており, R = 1/ 3の場合の流れが強いことが分かる。そのために熱伝 達が良く,Nuが大きくなっているといえる。温度分 布を見ても,R = 1/3の場合は R = 1 の場合に比べ 加熱面及び冷却面付近の温度勾配が大きく,熱移動 量が多いことが分かる。

 $T_h = 10^{\circ}C$ では、流れ関数の絶対値から明らかな ように、R = 1の場合がR = 1/3の場合よりも流れ が強いことが分かるため熱伝達が良く、Nuが大き いと考えられる。温度分布を見ても、R = 1の場合 は冷却面付近の温度勾配が特に大きく、熱移動量が 多いことを示している。R = 1/3の場合の流れ模様 では、冷却部分に温度範囲が $0 \sim 4^{\circ}C$ である小さい 渦ができている。これにより熱の伝達が間接的にな り、熱伝達の効率が悪くなっていると考えられる。 R = 1の場合の流れ模様でも、冷却部分に小さい渦 ができているが、R = 1/3の場合の渦よりは影響が 少ないことが流れ関数の値から分かる。

図5,図7,図9において、いずれのケースにおいても、冷却面が上部に配置されているモデルで、加熱面温度が8℃以下の範囲では最も平均ヌッセルト数 Nu が小さく、加熱面温度が8℃以上の範囲では最も平均ヌッセルト数 Nu が大きい。

3.4 平均ヌッセルト数 Nu の無次元整理

加熱面温度 T_hと平均ヌッセルト数 Nu の関係を レイレー数 Ra を用いて無次元整理した。レイレー 数 Ra を次式のように定義する。

図11,図12,図13に、3つのケースに対するレイ レー数 Ra と平均ヌッセルト数 Nu の関係を示す。 ただし、レイレー数 Ra は絶対値として扱っている。 図中の McAdams の結果⁽⁵⁾は、加熱面及び冷却面が それぞれ容器側面全体に設置されている場合の結果 であり、比較のため図示した。図から明らかなよう に、3つのケースのどのモデルも直線関係になって いるのが分かる。しかし、いずれのモデルも1つの 直線でまとめることができなく、レイレー数の範囲 によって直線の勾配が異なっている。レイレー数が 2×10³以下では、平均ヌッセルト数 Nu はレイレー 数に関係なく一定の値をとっている。この領域は、

Case1

図13 Ra と Nu の関係 (Case 3)

表1 係数 c と n

Case1	$2 \times 10^2 < Ral < 2 \times 10^3$ Nu	$1 \times 10^{4} < Ra < 2 \times 10^{4}$ $Nu = c \cdot Ra ^{n}$		$2 \times 10^4 < Ral < 3 \times 10^5$ Nu=c · Ra ⁿ	
		C	n	с	n
R=1	2.45	0.494	0.185	0.181	0.290
R=2	2.47	0.542	0.173	0.192	0.300
R=3	2.56	0.416	0.173	0.222	0.289

Case2	$2 \times 10^2 < Ra < 2 \times 10^3$	1×10 ⁴ < Ral<2×10 ⁴		2×10 ⁴ <1Ral<3×10 ⁵	
1	Nu	Nu≕c· Ra ⁿ		Nu=c· Ra ⁿ	
		С	n	С	n
R=1/2	2.46	0.234	0.281	0.287	0.238
R=1	2.74	0.307	0.257	0.252	0.276
R=3/2	2.77	0.125	0.325	0.272	0.276

Case3	2×10 ² <iral<2×10<sup>3</iral<2×10<sup>	1×10 ⁴ <[Ral<2×10 ⁴]		2×10 ⁴ <(Ral<3×10 ⁵	
	Nu	Nu≕c·lRal ⁿ		Nu=c· Ra ⁿ	
		с	n	с	n
R=1/3	2.58	0.358	0.236	0.492	0.155
R=2/3	2.80	0.481	0.212	0.202	0.269
R=1	2.18	0.140	0.318	0.134	0.321

加熱面温度 T_hが8℃ 近辺の結果に相当する。した がって、図のように一定値を示すのは、図4の8℃ の温度分布から分かるように、2つの渦の存在によ って熱伝達が間接的になり、熱の移動形態が熱伝導 状態になっているためと思われる。レイレー数が $2 \times 10^{3} \sim 1 \times 10^{4}$ の領域内では, Case 1 の R = 3 の場合及び Case 2の R = 3/2の場合の平均メッセ ルト数 Nu が急激に変化することが分かる。一方, レ イレー数が1×104以上の領域では、平均ヌッセルト 数 Nu はレイレー数 Ra の増加と伴に増大するが、 $|Ra| = 2 \times 10^4$ を境にその増加の割合が変化する。 しかし, Case 1, Case 2, Case 3 いずれの場合も R = 1の場合は、レイレー数が $1 \times 10^4 < |Ra| <$ 2×10⁴と2×10⁴以上の範囲で似たような傾きにな っている。Case 3の R = 1/3の場合でレイレー数の 範囲が2×104以上の結果を除くと、平均ヌッセルト 数 Nu が McAdams の結果より大きい値となって おり、側面全体加熱及び冷却の場合より熱伝達が良 いと考えられる。

これらの直線を、McAdamsの式と同様に次式の 形で表すことができると考えて、Nuの整理を試み た。

$Nu = c \cdot Ra ^n$	(9)
式(9)を用いた各ケー	・スの場合の係数の一覧表を表

1に示す。

4.結 論

本研究では、容器左側面に加熱面を、容器右側面 に冷却面をそれぞれ局部的に、様々な位置に配置し た場合の数値解析を行い、自然対流熱伝達特性につ いて検討を加えた。その結果、本研究の範囲内で以 下のことが明らかとなった。

(1)容器側面の局部加熱面及び局部冷却面位置が変 化することによって、容器内の水の熱伝達特性も変 化する。

(2)冷却面が下部に配置されている全てのモデル で、 $T_h = 10^{\circ}$ の場合の流れ模様には冷却部分に 0 ~ 4 $^{\circ}$ Cの温度領域の小さい渦が存在する。この流れ により熱の伝達が間接的になり、熱伝達の効率が悪 くなっていると考えられ、密度逆転の影響が顕著に 表れている。

(3)加熱面が上部に、冷却面が下部に配置されてい る場合、加熱面温度が8℃以上の範囲では、他のケ ースに比べ平均ヌッセルト数 Nu は小さい。さらに、 側面全体を加熱及び冷却した McAdamsの結果よ り平均ヌッセルト数 Nu が小さく、熱伝達が悪い。

(4)いずれのケースにおいても、冷却面が上部に配置されているモデルで、加熱面温度が8℃以下の範囲では最も平均ヌッセルト数 Nu が小さく、加熱面温度が8℃以上の範囲では最も平均ヌッセルト数 Nu が大きい。

(5)全てのモデルにおいて、レイレー数 Ra と平均 ヌッセルト数 Nu の関係は直線関係となり、平均ヌ ッセルト数 Nu をレイレー数 Ra の絶対値のべき乗 で表現することができる。

参考文献

- Inaba and Fukuda, J. Fluid Mech. (1984) Vol. 142, pp. 363-381.
- (2) Lin and Nansteel, Int. J. Heat Mass Transfer.
 (1987), Vol. 30, No. 11, pp. 2319–2329.
- (3) Valencia and Frederick, Int. J. Heat Mass Transfer. (1989), Vol. 32, No. 8, pp. 1567–1574.
- (4) 藤井 哲・藤井丕夫,第11回伝熱シンポ講論集
 (1974),C101,pp.369-372.
- (5) 関 信弘 編, 伝熱工学(1988), 森北出版株式 会社.