原子構造計算 V

一希土類原子に対する相対論的効果一

成 田 章・大 石 浩 司*・カビール ムハムドゥル**

Atomic Structure Calculations. V

-Relativistic effect on rare earth atoms-

Akira NARITA, Hiroshi OISHI* and Mahmudul Kabir**

(1997年11月28日受理)

The self-consistent relativistic atomic structure calculations are performed for first eight atoms of the lanthanum series based on the local density approximation, in which the exchange-correlation energy due to Gunnarsson and Lundqvist is assumed, the Latter approximation is adopted and also the balanced spin configurations are assumed. The calculated results are compared with the experimental ones. For the orbital energy levels, relatively good fits with experiment are obtained. The discrepancies found in our previous work for the orbital and total energies are partly removed in quality and are also considerably improved in quantity. However, the discrepancies are still remained while reduced.

1. はじめに

本論文では、前回行った希土類原子についての原子構造計算の続きを行う[1]。以下では文献[1]を II と引用する。II では、局所密度汎関数の方法を用いて自己無撞着な計算を数値的に実行した。そこでは相対論的効果は考慮しなかった。また、そのときスピン分極がない場合と Hund の規則に従うスピン分極がある場合について計算を行った。しかし、両方の場合において計算結果にまずい点があった。スピン分極がない場合についてその主なものを列挙すると次のようなものである。

- 1) $4f^n5d^16s^2$ 型の基底配置を持つ原子(La, Ce, Gd) について、2つの電子配置 $(4f^{n+1}6s^2 \& 4f^n5d^16s^2)$ の 全エネルギーを計算して比較したところ、 $4f^{n+1}6s^2$ の 方が低かった。これは、 $4f^n5d^16s^2$ が基底配置であるという実験事実に矛盾する。
- 2) La について実験による基底配置5d¹6s²を仮定して行った計算から得られた4f, 5d, 6s 軌道のエネ

ルギー準位の順番は $E_{\rm st}$ < $E_{\rm sd}$ < $E_{\rm ss}$ < 0 となった。この結果は明らかに自己矛盾を示している。何故なら,仮定した配置では4f 軌道は空で電子は存在していないにもかかわらず,得られた結果ではその軌道のエネルギー準位は,占有されている5d, 6s 軌道の単位の下に位置しているからである。

3) Pm を除く原子については、各軌道エネルギーの値は実験的には X 線吸収スペクトルの解析から得られている[2]。実験値と計算値とを比較したところ、あまり満足のいくものではなかった。ただし、アクチニド原子に比べれば両者の一致は良い。

II では、これらの食い違いの要因として、軌道分極や相対論的効果が考慮されていなかったことを挙げ、相対論的効果は原子番号の増加と共に大きくなることが知られているので特に後者が重要であることを指摘し、その効果を調べることを今後の課題としておいた。1s 軌道を回る電子の質量は、Ce ではその静止質量の1.1倍に重くなることが知られている。U ではその値は1.35倍なので[3]、希土類原子ではアクチニド原子に比べれば相対論的効果は小さいと言えるが、どの位効くのか興味がある。そこで今回

^{*} 秋田高専専攻科学生, **秋田高専学生

Fig. 1 The lowest energy levels of each electronic configuration in all neutral rare earth atoms are shown. These data are cited from Brewer's paper [5], and those without and with parentheses are, respectively, the spectroscopically determined experimental levels and the estimated ones by him. (a) $La\sim Gd$, (b) $Tb\sim Lu$.

の原子構造計算では、相対論的効果を取り入れた計算を行い、上に挙げた食い違いがどの程度解消されるかを実験結果との比較を行いながら調べることにした。

なお、本論文で行ったことはアクチニド原子につて行った論文 IV[4]と同じ観点からなされたので、 論述の順番もそれと同じであり、重複する部分の記述は割愛させて戴くことにする。

2. 計算方法

計算方法については論文 IV と同じなのでこれを 参照して戴きたい。IV におけるのと同じ理由で,以 下では NR, K-H, Dirac の 3 種類の計算を行い比較 検討する。

3. 電子配置のエネルギー準位についての値

Brewer[5]による電子配置のエネルギー準位のデータを Fig.1に示した。そこでは、基底配置のエネルギー準位を原点として測ったとき、40×10³ [cm⁻¹]より低い位置に存在する電子配置の準位のみが示されている。それぞれの電子配置の中で、最も低いエネルギーの状態の準位が示されている。これらの説明の詳細については IV を参照して戴きたい。

Fig. 1 から、それぞれの原子について多くの励起配置が存在することがわかる。今回の計算では $4f^{n5}$ d^16s^2 型と $4f^{n+1}6s^2$ 型の配置を含め、それらの間に存在している配置について計算を行う。また、II において矛盾点が多くみられたランタン系列の中のシリーズ前半の原子について原子構造計算を行う。それぞれの原子について計算を行う配置は次のものである。

	基底配置	励起配置
La	$5d^16s^2$	5d ² 6s ¹ , 5d ³ , 4f ¹ 6s ²
Ce, Gd	$4f^n5d^16s^2$	$4f^{n}5d^{2}6s^{1}, 4f^{n+1}6s^{2}$
Pr. Nd. Pm. Sm. Eu	$5f^{n+1}7s^2$	$5f^{n}6d^{1}7s^{2}$

4. 計算結果と考察

4.1 電子配置のエネルギー準位

それぞれの原子について、NR、K-H、Dirac の 3 種類の計算から求められた全エネルギーと Fig. 1 における Brewer の値が Table I に示されている。

Table I The calculated total energies of selected excited configurations due to three kinds of calculations are compared with the experimental ones for the rare earth atoms, in which the total energies are measured from those of the ground configuration. Unit is $10^3 \, \mathrm{cm}^{-1}$.

Atoms	0.6	Total E	nergies [1	03cm-1	r rint d
Atoms	Configurations	NR	K-H	Dirac	Exp.[10 ³ cm ⁻¹
	5d ¹ 6s ²	0	0	0	0
La	5d ² 6s ¹	-0.88	5.58	4.86	2.668
57	5d ³	3.16	14.43	13.20	12.43
	4f 16s2	-15.73	4.33	4.54	(≤15.1)
-	4f 15d16s2	0	0	0	0
Ce	4f 15d26s1	-0.30	6.36	5.60	2.369
58	4f ² 6s ²	-24.27	-3.94	-3.65	4.762
Pr	4f ³ 6s ²	0	0	0	0
59	4f ² 5d ¹ 6s ²	31.63	10.55	10.22	(4.0) ± 1
Nd	4f ⁴ 6s ²	0	0	0	0
60	4f ³ 5d ¹ 6s ²	38.1	16.2	15.8	6.764
Pm	4f 56s2	0	0	0	0
61	4f ⁴ 5d ¹ 6s ²	43.82	20,98	20.54	(8.0)±1
Sm	4f 66s2	0	0	0	0
62	4f 55d 6s2	48.96	25.12	24.69	15.5
Eu	4f 76s2	0	0	0	0
63	4f65d16s2	53.6	28.7	23.22	25.1
	4f ⁷ 5d ¹ 6s ²	0	0	0	0
Gd	4f 75d26s1	4.94	13.53	12.56	6.378
64	4f ⁸ 6s ²	-57.73	-31.82	-26.12	10.947

Brewer の値については IV を参照されたい。この値 は Table I では Exp と表されている。全エネルギー は§3で選ばれた配置について計算したものであり、 3種類の計算のそれぞれにおいて、実験での基底配 置における全エネルギーを基準にとっている。計算 から求められた元の全エネルギーは Table II の最 下行に示されており、Table Iのものはそれらをま とめ直したものである。Table I において計算値と Brewer の値とを比較してみる。NR に比べて K-H による結果は大幅に改善されて Brewer の値に近づ いていることがわかる。Dirac ではさらに改善され ている。これより、相対論的効果の導入によって実 験結果により良く合うようになったこと、およびス ピン軌道相互作用も重要であることがわかる。両者 の一致は、Euで最も良く、LaからSmまでがその 次でこれらは同じ位に良く、Gd で最も良くない。Gd で良くないのは、スピン分極の効果を考慮していな いためであると推測される。何故なら、II でも指摘 したように、この効果は中央の Gd において最も大 きいからである。アクチニド原子では、シリーズの 始まりの方で比較的良い一致を示したが[4], 希土 類原子ではそうはなっていない。また, Am について は比較的良い一致が得られていたが、これは Eu と 同じ列にあることと関連があるように思われる。こ れらの結果は、希土類原子ではアクチニド原子に比 べ軌道分極の効果が大きいことを示唆しているよう

Fig. 2 The total energies calculated for the intermediate configurations between two selected ones are plotted for first eight atoms in the lanthanum series as a function of x indicating the intermediate degree. The total energies calculated for the experimental ground configuration are chosen as origin for each calculation in NR, K-H and Dirac. (a) La, (b) Ce, (c) Pr, (d) Nd, (e) Pm, (f) Sm, (g) Eu, (h) Gd.

に思われる。

次に,計算による基底配置は実験による基底配置と 一致するのか、ということについて議論する。Table I の Ce と Gd についての計算結果は、4 fⁿ⁺¹6 s²型 の配置の方が実験による基底配置4f°5d¹6s²よりエネ ルギーが低いことを示している。従って、Ce と Gd については§1で述べたまずい点1)は、量的には相当 改善はされているが質的には改善されていないこと がわかる。この2つを除いた他の原子では、計算に よる基底配置は Table I からは実験による基底配置 に一致しているように見える。これが本当なのかを 調べるため、例えば La について、4f*5d1-*6s2という 配置を考え、xを0から1まで連続的に変化させて 全エネルギーを計算してみた。そして途中のxの値 でそれが極小を持つかどうかを調べた。このような ことを8個の原子について行いその結果をFig.2 に示した。この図より、La、Ce、Pr については、xが0と1の中間の値で全エネルギーが極小となり、 計算上の基底配置は実験によるものと一致しないこ とがわかる。そのxの値は、CeではK-Hについて dx = 0.61, Dirac についてdx = 0.60である。 Dirac ではスピン軌道相互作用が入っている分だけ 極小を与える x の値が、僅かに実験による基底配置 の側へ近づく傾向を示しているが、それらのxの値 の差 $\Delta x = 0.01$ の値は Th($\Delta x = 0.12$)のものに 比べればかなり小さく[4], 当然予想されるように アクチニド原子におけるよりスピン軌道相互作用の 効果が小さいことがわかる。ただし、Fig. 2 からわか るように、Eu と Gd では K-H と Dirac による結果 は La~Sm に比べて差が大きく、スピン軌道相互作 用の効果が大きいことを示している。

今回の計算方法においても IV におけると同様,全エネルギーが最低となるときの配置を LDA 基底配置(LDA ground con.)とよぶことにする[6]。 Table II には,それぞれの原子についてこの LDA 基底配置を表すxの値も示されている。ただし,そこに示した LDA 基底配置が正しいという証明は今のところない。何故なら,ここでは $4f^{n+1}6s^2$ 型と $4f^{n}5$ d^16s^2 型の配置の間でのみxを変化させて全エネルギーを調べただけだからである。

4. 2 軌道のエネルギー準位

LaからGdまでの8原子についての原子構造計算から得られた軌道エネルギーの値をTable IIに示した。ここでは、冒頭の2)、3)で述べた問題点について論ずる。最初にLaの計算結果について考察

することにする。それは Table II(a) に示されている。La の基底配置5d¹6s²についての軌道エネルギーの計算値を同じ表に示された実験値と比較する。NR に比べて、相対論的効果が入った K-H と Dirac の場合の結果が実験値にかなり近づいてより良く合うようになっていることがわかる。特に内殼軌道についての一致が良く、外殼になるにつれて誤差は大きくなっていく傾向にある。ただし、4f、5d、6s など高いところにある準位については、スペクトル解析等の困難なこともあって、実験値もそんなに信頼できるものではないことに注意するべきである。

次に、La(5d¹6s²)の4f, 5d, 6s 軌道のエネルギー 準位について NR, K-H, Dirac の 3 種類の計算によ る違いを見てみる。NRでは $E_{4f} < E_{5d} < E_{6s}$ とな っているが, K-H では6s 準位は下降, 4f, 5d 準位は 上昇してそれらの間に変化が起きて $E_{41} < E_{6s} <$ E_{5d} となっている。これは相対論的効果における質 量速度項により ns 準位 (n=1-6) が降下し、その 結果生ずる核電荷の遮蔽により4f,5d準位が上昇し たためである[3]。中でも、4f準位の上昇が大きい。 しかし、計算において空と仮定した4f準位は、依然 として占有されている6s, 5d 準位の下に位置してい るので、2)で述べた矛盾は質的には5dと6s準位の 位置が逆転してはいるものの改善はされてはいな い。それでも、これらの準位の存在する範囲は、4f準 位の大きい上昇を反映して0.3 Ryd から0.1 Ryd へ と相当小さくなっており、量的にはかなり改善され たと言える。Dirac の場合は、4f と5d 軌道がスピン 軌道相互作用により分裂しただけで、K-H の結果か ら2)における矛盾を解消するほどの大きい変化はな く, 今回の計算における近似の範囲内では相対論的 効果を考慮しても問題はまだ残っている。ただし, 軌道エネルギー準位の実験との一致という3)の意味 においては、スピン軌道相互作用による分裂は重要 である。

La 以外の原子についても、特に内殼軌道については La について得られたのと似た結果になっている。しかし、4f、5d、6s 軌道については多少異なっている。Ce の実験による基底配置4f¹5d¹6s²では、NRから K-Hへ移ったときの準位の位置関係の変化は La のときと同じである。 $Pr(4f^36s^2)$ では NRで $E_{4f} < E_{6s} < E_{5d}$ となっていて矛盾はないが K-Hでは $E_{6s} < E_{5d}$ となっていて矛盾はないが上昇し過ぎて新たに矛盾をもたらしている。Ndから Eu までは、NRの $E_{4f} < E_{6s} < E_{5d}$ から K-Hの $E_{6s} < E_{4f} < E_{5d}$ へ変化して6s 準位が最下位となっている。しか

原子構造計算 V

Table II The calculated orbital and total energies of neutral rare earth atoms due to three kinds of calculations are shown for selected and LDA ground configurations, and they are compared with the experimental orbital energies for the ground configuration except for Pm. Unit is Ryd.

(a) La LDA ground con.: 4f*5d1-x6s2 5d 16s2 4f 16s2 $-E_{nl}(Ryd)$ Dirac (x = 0.34)NR K-H NR K-H Dirac NR K-H Dirac Exp. (x = 0.95)(x = 0.35)151/2 2843.1 2711.3 2843.5 2843.0 2867.5 2710.8 2843.4 2842.8 2710.8 2842.5 251/2 419.75 452.69 452.54 462.0 419.21 452.50 452.36 419.18 452.22 452.07 2p_{1/2} 426.98 434.3 426.80 426.53 396.74 405.82 396.20 405.63 396.18 405.36 396.66 404.3 396.48 396.20 2p3/2 89.794 96.869 3s_{1/2} 89.173 96.649 89,145 96.331 96.823 100.8 96 609 96 282 3p_{1/2} 86.029 89.2 85.816 85.491 79.873 81,919 79.256 81.700 79.227 81.383 3p_{3/2} 80 121 83.2 79 907 79 581 3d_{3/2} 61.144 63.1 60.934 60.613 61.335 60.417 60.727 60.200 60.699 59.888 3d_{5/2} 59.879 61.7 59.668 59.347 451/2 18.079 19.605 19.588 20.3 17.529 19.403 19.392 17.503 19.108 19.089 4p_{1/2} 15 616 15.424 15.125 15.6 14.741 14.414 13.873 14.545 13.847 14.257 4p_{3/2} 14.350 14.5 14.161 13.867 4d_{3/2} 7.7 7.8283 7.6480 7.3679 7.9937 7.7082 7.4778 7.5230 7.2511 7.4532 4d_{5/2} 7.6086 7.7 7.4296 7.1514 4f_{5/2} 0.42107 0.08868 0.28674 0.66962 0.41771 0.27057 0.27936 0.25202 0.08699 4f7/2 0.40054 0.26752 0.07338 5s_{1/2} 2.7205 2.9448 2.9380 2.9 2.5014 2.8592 2.8557 2.4901 2.7297 2.7236 5p1/2 1.8505 1.7825 1.6734 1.7177 1.7226 1.5 1.5380 1.6556 1.5286 1.5544 5p_{3/2} 1.6614 1.5987 1.4983 5d_{3/2} 0.30371 0.27842 0.24071 0.34231 0.29782 0.26646 0.27199 0.26253 0.23607 5d_{5/2} 0.28984 0.26589 0 23037 6s_{1/2} 0.32758 0.34470 0.34375 0.30715 0.33651 0.33602 0.30594 0.32460 0.32387

16437,7361

16976.2314

16984.6998

16437.7357

16976.1728

16984.6401

		4f 15	d 16s2		LDA gro	LDA ground con.: 4f1**5d1**6s2			4f ² 6s ²	
-E _{nl} (Ryd) NR	NR	к-н	Dirac	Exp.	NR (x = 1.0)	K-H ($x = 0.61$)	Dirac $(x = 0.60)$	К-Н	Dirac	
1s _{1/2}	2812.4	2955.0	2954.3	2979.1	2811.9	2954.7	2954.1	2954.5	2953.9	
2s _{1/2}	437.45	473.14	472.98	482.7	436.89	472.83	472.67	472.67	472.50	
2p _{1/2}	412.02		446.75	454.4	412.20	402.52	446.45	422.27	446.29	
2p _{3/2}	413.93	423.84	413.97	421.94	413.39	423.53	413.67	423.37	413.50	
3s _{1/2}	94.15	101.93	101.87	106.0	93.512	101.57	101.52	101.38	101.32	
3p _{1/2}	02.000	06.262	90.745	94.1	02 222	05.000	90.392	85.715	90.198	
3p _{3/2}	83.958	86.263	84.306	87.6	83.322	85.903	83.951		83.757	
3d _{3/2}	64.007	63.991	64.782	66.8	64 200	63,636	64.433	63.451	64.242	
3d _{5/2}	64.907	63.991	63.398	65.4	64.280	03.030	63.048		62.856	
4s _{1/2}	18.944	20.664	20.643	21.7	18.375	20.332	20.316	20.155	20.134	
4p _{1/2}	15.140	15.549	16.511	16.9	14.502	15.225	16.189	15.053	16.010	
4p _{3/2}	15.142	15.549	15.118	15.7	14.583	13.223	14.802		14.625	
4d _{3/2}	0.4620	8.1924	8.3235	8.7	7.0074		8.0211	7.7215	7.8516	
4d _{5/2}	8.4628	8.1924	8.0796	8.5	7.9274	7.8855	7.7793	7.7213	7.6110	
4f _{5/2}	0.75034	0.49364	0.49670	0.50	0.32440	0.05005	0.26490	0.13541	0.13888	
4f _{7/2}	0.75034	0.49364	0.47208	0.30	0.32440	0.25775	0.24255	0.13341	0.11825	
5s _{1/2}	2.8110	3.0672	3.0591	3.3	2.5805	2.9212	2.9172	2.8382	2.8327	
5p _{1/2}	1.7698	1.7840	1.9235	2.0	1.5800	1.6689	1.8053	1.6028	1.7344	
5p _{3/2}	1,7098	1.7840	1.7170	2.0	1.5800	1.0089	1.6083	1.0028	1.5428	
5d _{3/2}	0.34220	0.29719	0.30335		0.26197	0.25303	0.25958	0.22842	0.23402	
5d _{5/2}	0.34220	0.29/19	0.28851	0.20197	0.23303	0.24723	0.22642	0.22320		
6s _{1/2}	0.33210	0.35084	0.34979		0.31045	0.33636	0.33598	0.32729	0.32692	
$E_{total}(Ryd)$	17129.2154	17710.2918	17719.7875		17129.4367	17710.3473	17719.8412	17710.3277	17719.8208	

16437.5923

-Etosal (Ryd)

16976.2123

16984.6815

(continued)

(c) Pr

		4f 36s2		LDA g	round con.: 4f3	*5d*6s2		4f 25d 16s2	
$-E_{nl}(Ryd)$	К-Н	Dirac	Exp.	NR $(x = 0)$	K-H ($x = 0.18$)	Dirac $(x = 0.18)$	NR	К-Н	Dirac
1s _{1/2}	3068.4	3067.7	3093.1	2914.8	3068.5	3067.8	2915.3	3068.9	3068.2
2s _{1/2}	493.62	493.44	504.7	454.93	493.70	493.51	455.49	494.10	493.92
2p _{1/2}	444.70	466.55	474.68	420.00	441.04	466.62	431.47	442.24	467.02
2p _{3/2}	441.76	431.15	439.63	430.92	441.84	431.22	431.47	442.24	431.62
351/2	106.53	106.46	111.4	97.927	106.61	106.55	98.563	107.08	107.01
3p _{1/2}	00.100	95.003	98.7	7 87,463	00.005	95.088	88.095	90.671	95.552
3p _{3/2}	90.120	87.993	91.8	87.403	90.205	88.079	88.095	90.071	88.544
3d _{3/2}	07.000	67.928	70.3	67,000	67.150	68.012	68.530	67,612	68.471
3d _{5/2}	67.068	66.416	68.9	67.906	67.152	66.500	08.530	07.012	66.960
4s _{1/2}	21.205	21.180	22.7	19.230	21.286	21.261	19.798	21.718	21.692
4p _{1/2}	15.010	16.894	17.6	45,000	15.000	16.973	15.860	16.344	17.399
4p _{3/2}	15.843	15.375	16.3	15.302	15.922	15.453			15.871
4d _{3/2}	0.1001	8.3259	9	0.2027	0.0504	8.4013	0.0000	8.6599	8.8029
4d _{5/2}	8.1831	8.0596	8.8	8.3837	8.2584	8.1345	8.9200	8.0599	8.5333
4f _{5/2}	0.10101	0.18516		0.20240	0.00007	0.24319	0.81950	0.55539	0.55818
4f _{7/2}	0.18121	0.16005		0.38349	0.23937	0.21734	0.81950	0.55539	0.52926
5s _{1/2}	2.9476	2.9414	. 3.1	2.6635	2.9873	2.9806	2.8968	3.1838	3.1744
5p _{1/2}	4.0500	1.7959		1.0055	1.0040	1.8292	1.0100	1.8401	1.9917
5p _{3/2}	1.6522	1.5873	1.7	1.6255	1.6843	1.6180	1.8182	1.8401	1.7673
5d _{3/2}		0.22929		0.05000	0.00500	0.24131	0.04080	0.29466	0.30112
5d _{5/2}	0.22328	0.21797		0.25929	0.23526	0.22921	0.34060	0.23400	0.28535
6s _{1/2}	0.33181	0.33148	34040.5	0.31442	0.33649	0.33599	0.33639	0.35676	0.35561
-E _{total} (Ryd)	18463.7862	18474.4115		17837.8831	18463.7899	18474.4156	17837.5947	18463.6900	18474.318

(d) Nd

		LDA ground co	on.: 4f **5d *6s2			4f ³ 5d ¹ 6s ²			
707	NR (x = 0)	K-H (x = 0)	Dirac (x = 0)	Exp.	NR	К-Н	Dirac		
1s _{1/2}	3019.5	3184.8	3184.0	3209.6	3020.0	3185.2	3184.5		
2s _{1/2}	473.31	515.10	514.89	525.5	473.87	515.59	515.38		
2p _{1/2}	448.79	460.55	487.32	495.56	449.34	461.03	487.79		
2p _{3/2}	448.79	460.55	449.14	457.76	449.34	401.03	449.62		
3s _{1/2}	102.40	111.78	111.71	116.5	103.04	112.34	112.26		
3p _{1/2}	04.000	04.000	99.911	103.9	00.000	05.150	100.46		
3p _{3/2}	91.660	94.600	92.293	96.1	92.293	95.153	92.847		
3d _{3/2}	71.507	70.740	71.676	74.2	72.211	71.289	72.221		
3d _{5/2}	71.587	70.742	70.027	72.6			70.574		
4s _{1/2}	20.078	22.259	22.230	23.8	20.647	22.777	22.746		
4p _{1/2}	10010	10.000	17.779	18.5	16.573	17.134	18.288		
4p _{3/2}	16.012	16.629	16.117	17.1			16.617		
4d _{3/2}	0.0000	0.0050	8.7908	9.3	9.3700	9,1179	9.2735		
4d _{5/2}	8.8298	8.6350	8.4974	9.2	9.3700	9.1179	8.9768		
4f _{5/2}	0.40000	0.01000	0.22306	0.6	0.07075	0.00000	0.60919		
4f _{7/2}	0.43306	0.21890	0.19341	0.6	0.87975	0.60668	0.57566		
5s _{1/2}	2.7421	3.0539	3.0469	3.3	2.9795	3,2973	3.2867		
5p _{1/2}	1 2070	4 0007	1.8547	2.0	1.0041	1 0000	2.0571		
5p _{3/2}	1.6673	1.6987	1.6286	2.0	1.8641	1.8930	1.8144		
5d _{3/2}	0.05500	0.04750	0.22380		0.00704	0.00007	0.29754		
5d _{5/2}	0.25532	0.21758	0.21217		0.33794	0.29087	0.28097		
6s _{1/2}	0.31810	0.33635	0.33602		0.34052	0.36248	0.36121		
-E _{total} (Ryd)	18563.2301	19236.8235	19248.6959		18562.8829	19236.6761	19248.5519		

原子構造計算 V

(continued)

(e) Pm

	LDA gr	round con.: 4f	-45d*6s2		4f *5d 16s2	
$-E_{nl}$ (Ryd)	NR $(x = 0)$	K-H (x = 0)	Dirac $(x = 0)$	NR	К-Н	Dirac
1s _{1/2}	3126.0	3303.7	3302.9	3126.6	3304.2	3303.3
2s _{1/2}	492.02	537.11	536.88	492.59	537.60	537,37
2p _{1/2}	466.99	479.73	508.61	467.55	480.21	509.09
2p _{3/2}	400.99	4/9./3	467.48	407.55	480.21	467.97
351/2	106.94	117.16	117.07	107.57	117.72	117.63
3p _{1/2}	05.00	00.160	104.929	96.555	99.717	105.483
3p _{3/2}	95.92	99.160	96.663	90.555	99.717	97.220
3d _{3/2}	75.329	74.478	75.489	75.956	75.029	76.038
3d _{5/2}	75.329	74.478	73.696		75.029	74.246
4s _{1/2}	20.922	23.322	23.288	21.495	23.845	23.809
4p _{1/2}	10717	17.415	18.671	17.283	17.926	19.186
4p _{3/2}	16.717	17.415	16.856			17.362
4d _{3/2}	9.2700	9.0810	9.2507	9.8157	9.5708	9.7398
4d _{5/2}	9.2700	9.0810	8.9284	9.8157	9.5708	9.4142
4f _{5/2}	0.47520	0.24948	0.25378	0.93277	0.64985	0.65205
4f _{7/2}	0.47520	0.24948	0.21926	0.93277	0.04983	0.61359
5s _{1/2}	2.8176	3.1584	3.1506	3.0601	3.4095	3.3976
5p _{1/2}	1.7066	1.7429	1.9116	1.9081	1,9439	2.1210
5p _{3/2}	1.7000	1.7429	1.6674	1,9081	1,9459	1.8592
5d _{3/2}	0.25046	0.21132	0.21773	0.22440	0.28625	0.29313
5d _{5/2}	0.23046	0.21132	0.20580	0.33449	0.20023	0.27576
6s _{1/2}	0.32157	0.34081	0.34046	0.34457	0.36819	0.36679
-E _{total} (Ryd)	19305.6304	20029.7121	20042.9560	19305.2309	20029.5208	20042.768

(f) Sm

		LDA ground co	on.: 4f 6x5d x6s2		4f ⁵ 5d 16s ²			
	NR (x = 0)	K-H (x = 0)	Dirac (x = 0)	Exp.	NR	К-Н	Dirac	
151/2	3234.5	3425.2	3424.3	3449.6	3235.0	3425.6	3424.7	
281/2	511.08	559.66	559.41	570.3	511.65	560.16	559.90	
2p _{1/2}	485.54	499.31	530.44	540.6	486.10	499.80	530.92	
2p _{3/2}	485.54	499.31	486.18	495.0	480.10	499.80	486.67	
3s _{1/2}	111.54	122.65	122.55	127.6	112.18	123.21	123.11	
3p _{1/2}	100.05	100.01	110.06	113.8	100.00	104.07	110.62	
3p _{3/2}	100.25	103.81	101.11	104.9	100.89	104.37	101.67	
3d _{3/2}	70.100	70.070	79.373	82.1	79.766	78.835	79.926	
3d _{5/2}	79.136	78.279	77.426	79.9			77.980	
451/2	21.766	24.399	24.360	26.0	22.345	24.927	24.886	
4p _{1/2}		10001	19.573	20.0	17.993	18.722	20.094	
4p _{3/2}	17.422	18.204	17.596	18.6			18.108	
4d _{3/2}	0.7000	0.00	9.7085	10.7	10.0500		10.2044	
4d _{5/2}	9.7069	9.5241	9.3555	9.8	10.2593	10.0211	9.8481	
4f _{5/2}	0.54404	0.07007	0.27836	1.1	0.07070		0.68808	
4f7/2	0.51121	0.27397	0.23872		0.97973	0.68624	0.64432	
5s _{1/2}	2.8910	3.2622	3.2535	2.9	3.1391	3.5212	3.5080	
5p _{1/2}	. 7440	4 7000	1.9675		10507		2.1841	
5p _{3/2}	1.7440	1.7855	1.7044	1.9	1.9507	1.9934	1.9024	
5d _{3/2}		0.00107	0.21117			0.00000	0.28802	
5d _{5/2}	0.24498	0.20467	0.19911		0.33041	0.28096	0.26996	
6s _{1/2}	0.32490	0.34517	0.34482		0.34851	0.37381	0.37229	
-E _{total} (Ryd)	20065.2346	20842.7265	20857.4769		20064.7882	20842.4974	20857.252	

(continued)

(ø) Eu

	J	LDA ground co	on.: 4f ^{7-x} 5d ^x 6s ²	1000		4f ⁶ 5d ¹ 6s ²			
-E _{nl} (Ryd)	NR (x=0)	K-H (x=0)	Dirac (x=0)	Exp.	NR	К-Н	Dirac		
1s _{1/2}	3344.7	3549.3	3548.3	3572.1	3345.2	3549.7	3548.7		
2s _{1/2}	530.48	582.78	582.50	593.3	531.06	583.28	582.99		
2p _{1/2}		510.20	552.82	562.2	505.00	519.79	553.30		
2p _{3/2}	504.44	519.30	505.25	514.1	305.00	319.79	505.73		
381/2	116.22	128.27	128.17	132.8	116.86	128.84	128.73		
3p _{1/2}	104.6	100.54	115.33	119.0	105.20	109.11	115.88		
3p _{3/2}	104.6	108.54	105.64	109.3	105.29		106.19		
3d _{3/2}	00.010	02.010	02.150	83.343	85.7	83.645	82,710	83.888	
3d _{5/2}	83.010	82.150	81.232	83.5	83.645	82.710	81.778		
4s _{1/2}	22.613	25.492	25.454	26.7	23.198	26.027	25.979		
4p _{1/2}	10.10	40.000	20.497	21.2	18.706	19.524	21.016		
4p _{3/2}	18.12	19.000	18.346	19.2			18.857		
4d _{3/2}	10.110	142 0.0662	10.173	10.3	10.702	10.471	10.669		
4d _{5/2}	10.142	9.9663	9.7871	10.2	10.702	10.471	10.280		
4f _{5/2}	0.54000		0.30238		4.004.47	0.71600	0.71842		
4f7/2	0.54202	0.29324	0.25711	1.7	1.02147	0.71698	0.66902		
5s _{1/2}	2.9629	3.3659	3.3581	2.6	3.2171	3.6334	3.6186		
5p _{1/2}	1 7001	1.02/0	2.0242	1.0	1,0022	2.0420	2.2470		
5p _{3/2}	1.7801	1.8268	1.7412	1.8	1.9923	2.0420	1.9444		
5d _{3/2}	0.00004	0.10777	0.20463		0.22505	0.27520	0.28246		
5d _{5/2}	0.23904	0.19777	0.19246		0.32585	0.27528	0.26375		
6s _{1/2}	0.32814	0.34948	0.34922		0.35246	0.37962	0.37794		
-Etotal (Ryd)	20842.1926	21676.1440	21692.5015		20841.7042	21675.8824	21692.2898		

(h) Gd

		4f ⁷ 5	d 16s2		LDA ground con.: 4f ^{7+x} 5d ^{1-x} 6s ²			
$-E_{nl}$ (Ryd)	NR	К-Н	Dirac	Ехр.	NR (x = 1.0)	K-H (x = 1.0)	Dirac $(x = 1.0)$	
1s _{1/2}	3457.3	3676.4	3675.3	3699.5	3456.8	3676.0	3674.9	
2s _{1/2}	550.81	606.97	606.66	617.0	550.23	606.46	606.17	
2p _{1/2}	524.25	540.20	576.25	584.09	523.68	539.69	575.77	
2p _{3/2}	524.25	340.20	525.17	533.47	323.08	339.09	524.68	
3s _{1/2}	121.61	134.60	134.49	138.6	120.96	134.03	133.93	
3p _{1/2}	100.76	112.04	121.28	124.5	100.11	113.37	120.73	
3p _{3/2}	109.76	113.94	110.81	113.7	109.11	113.57	110.25	
3d _{3/2}	97 502	06 657	87.939	89.6	86.954	86.092	87.391	
3d _{5/2}	87.593	86.657	85,655	87.3		86.092	85.105	
4s _{1/2}	24.055	27.146	27.099	27.5	23.464	26.604	26.568	
4p _{1/2}	10 400	20.224	21.962	21.4	18.838	19.803	21.436	
4p _{3/2}	19.422	20.334	19.618	20.0			19.101	
4d _{3/2}	11.146	10.922	11.142	10.6	10.578	10.409	10.639	
4d _{5/2}	11.140	10.922	10.718	10.4	10.578	10.409	10.218	
4f _{5/2}	1.0586	0.74272	0.74819	0.6	0.56831	0.30793	0.32202	
4f _{7/2}	1.0386	0.74272	0.69263	0.6	0.30831	0.30793	0.27078	
5s _{1/2}	3.2943	3.7463	3.7313	2.7	3.0337	3.4702	3.4631	
5p _{1/2}	2.0330	2.0900	2.3109	1.6	1.0150	1 0674	2.0808	
5p _{3/2}	2.0330	2.0900	1.9865	1.6	1.8150	1.8674	1.7769	
5d _{3/2}	0.22000	0.26022	0.27668		0.22275	0.10092	0.19789	
5d _{5/2}	0.32090	0.26923	0.25730		0.23275	0.19082	0.18578	
6s _{1/2}	0.35637	0.38540	0.38360		0.33126	0.35383	0.35366	
-Etotal(Ryd)	21636.1269	22529.9558	22548.1179		21636.6532	22530.2459	22548.356	

し、Ndでは4fは5dのほんの僅かだけ下に位置していてこれらの傾向における境界にあたっているように思われる。Gdでは相対論的効果によりこれらの準位の間に逆転は生じていない。このように詳細に見ると、相対論的効果は準位間の位置関係についても原子によって異なる質的変化をもたらしていることがわかる。

また、Table II から、La、Ce、Pr に対してのように 0 < x < 1 を満たす x で LDA 基底配置が起こるときは4f と5d 準位は非常に接近した位置にあること、また4f、5d、6s 軌道準位の位置関係はx により変化することがわかる。

5. まとめと今後の課題

前論文[1]に引き続き希土類原子について相対論 的原子構造計算を行い,前回指摘した問題点に着目 しながら,軌道エネルギー準位,基底配置の型およ び励起配置のエネルギー準位などに対する相対論的 効果について調べた。その結果,確認されたことと 今後の課題を列挙する。

- 1) アクチニド原子についてと同様,電子間クーロン相互作用との複合効果として,s軌道のエネルギー準位の降下,およびそれによる外殼側の5f,6d 軌道のエネルギー準位の上昇が確認された。
- 2) 非相対論に比べて実験に近い軌道エネルギー準位が得られた。

- 3) 冒頭で述べた問題点, 1), 2)については, 質的 に改善されたが, 一部実験事実に合わないものが残 っており全面的に解決された訳ではない。しかし, 不一致のまま残ったものについても, 量的には実験 に合う方向にかなりに改善された。
- 4) 今後の課題は、相対論的効果に加えてスピン分極[7]および軌道分極[8]の効果を調べ、残された問題点の改善をはかることである。

参考文献

- [1] 成田 章, 大石浩司: 秋田高専研究紀要, 32, 109, 1997. この論文を II と引用する
- [2] A.E. Sandström: Encyclopedia of Physics, 30, 78, 1957, ed. Flügge, Springer-Verlag.
- [3] 樋口雅彦, 長谷川 彰:新潟大学情報処理センター年報, 5, 3, 1994.
- [4] 成田 章, 大石浩司, 鎌田慎也: 秋田高専研 究紀要, **33**, 89, 1997. この論文を IV と引用す る。
- [5] L. Brewer: J. Opt. Soc. Am. 61, 1101, 1971;61, 1666, 1971.
- [6] V.L. Moruzzi, F.F. Janak and A.R. Williams: Calculated Electronic Properties of Metals, Pergamon Press Inc., 1978.
- [7] A.H. MacDonald: J. Phys. C, 16, 3869, 1983.
- [8] M.Higuchi and A. Hasegawa: J. Phys. Soc. Jpn. 66, 149, 1997.