一希土類原子に対する相対論的効果一

成田

田 章・大 石 浩 司*・カビール ムハムドゥル**

Atomic Structure Calculations. V

-Relativistic effect on rare earth atoms-

Akira NARITA, Hiroshi OISHI* and Mahmudul Kabir**

(1997年11月28日受理)

The self-consistent relativistic atomic structure calculations are performed for first eight atoms of the lanthanum series based on the local density approximation, in which the exchange-correlation energy due to Gunnarsson and Lundqvist is assumed, the Latter approximation is adopted and also the balanced spin configurations are assumed. The calculated results are compared with the experimental ones. For the orbital energy levels, relatively good fits with experiment are obtained. The discrepancies found in our previous work for the orbital and total energies are partly removed in quality and are also considerably improved in quantity. However, the discrepancies are still remained while reduced.

1. はじめに

本論文では,前回行った希土類原子についての原 子構造計算の続きを行う[1]。以下では文献[1]を IIと引用する。IIでは,局所密度汎関数の方法を用 いて自己無撞着な計算を数値的に実行した。そこで は相対論的効果は考慮しなかった。また,そのとき スピン分極がない場合と Hundの規則に従うスピ ン分極がある場合について計算を行った。しかし, 両方の場合において計算結果にまずい点があった。 スピン分極がない場合についてその主なものを列挙 すると次のようなものである。

 4fⁿ5d¹6s²型の基底配置を持つ原子(La, Ce, Gd) について、2つの電子配置(4fⁿ⁺¹6s²と4fⁿ5d¹6s²)の 全エネルギーを計算して比較したところ、4fⁿ⁺¹6s²の 方が低かった。これは、4fⁿ5d¹6s²が基底配置であると いう実験事実に矛盾する。

 Laについて実験による基底配置5d¹6s²を仮定 して行った計算から得られた4f, 5d, 6s 軌道のエネ

* 秋田高專專攻科学生, **秋田高專学生

ルギー準位の順番は $E_{4t} < E_{5d} < E_{6s} < 0$ となった。この結果は明らかに自己矛盾を示している。何故なら、仮定した配置では4f軌道は空で電子は存在していないにもかかわらず、得られた結果ではその軌道のエネルギー準位は、占有されている5d、6s軌道の準位の下に位置しているからである。

3) Pmを除く原子については、各軌道エネルギ ーの値は実験的には X 線吸収スペクトルの解析か ら得られている[2]。実験値と計算値とを比較した ところ、あまり満足のいくものではなかった。ただ し、アクチニド原子に比べれば両者の一致は良い。

II では、これらの食い違いの要因として、軌道分 極や相対論的効果が考慮されていなかったことを挙 げ、相対論的効果は原子番号の増加と共に大きくな ることが知られているので特に後者が重要であるこ とを指摘し、その効果を調べることを今後の課題と しておいた。1s 軌道を回る電子の質量は、Ce ではそ の静止質量の1.1倍に重くなることが知られている。 U ではその値は1.35倍なので[3]、希土類原子では アクチニド原子に比べれば相対論的効果は小さいと 言えるが、どの位効くのか興味がある。そこで今回

秋田高専研究紀要第33号

Fig. 1 The lowest energy levels of each electronic configuration in all neutral rare earth atoms are shown. These data are cited from Brewer's paper [5], and those without and with parentheses are, respectively, the spectroscopically determined experimental levels and the estimated ones by him. (a) $La \sim Gd$, (b) $Tb \sim Lu$.

平成10年2月

-101 -

の原子構造計算では、相対論的効果を取り入れた計 算を行い、上に挙げた食い違いがどの程度解消され るかを実験結果との比較を行いながら調べることに した。

なお、本論文で行ったことはアクチニド原子につ て行った論文 IV[4]と同じ観点からなされたので、 論述の順番もそれと同じであり、重複する部分の記 述は割愛させて戴くことにする。

2. 計算方法

計算方法については論文 IV と同じなのでこれを 参照して戴きたい。IV におけるのと同じ理由で,以 下では NR, K-H, Dirac の3種類の計算を行い比較 検討する。

3. 電子配置のエネルギー準位についての値

Brewer[5]による電子配置のエネルギー準位の データをFig.1に示した。そこでは、基底配置のエ ネルギー準位を原点として測ったとき、40×10³ [cm⁻¹]より低い位置に存在する電子配置の準位の みが示されている。それぞれの電子配置の中で、最 も低いエネルギーの状態の準位が示されている。こ れらの説明の詳細については IV を参照して戴きた い。

Fig.1から、それぞれの原子について多くの励起 配置が存在することがわかる。今回の計算では4fⁿ⁵ d¹6s²型と4fⁿ⁺¹6s²型の配置を含め、それらの間に存 在している配置について計算を行う。また、IIにお いて矛盾点が多くみられたランタン系列の中のシリ ーズ前半の原子について原子構造計算を行う。それ ぞれの原子について計算を行う配置は次のものであ る。

	基底配置	励起配置
La	$5d^16s^2$	5d ² 6s ¹ , 5d ³ , 4f ¹ 6s ²
Ce, Gd	$4 f^n 5 d^1 6 s^2$	$4f^{n}5d^{2}6s^{1}, \ 4f^{n+1}6s^{2}$
Pr, Nd, Pm, Sm, Eu	$5f^{n+1}7s^2$	$5 f^n 6 d^1 7 s^2$

4. 計算結果と考察

4.1 電子配置のエネルギー準位

それぞれの原子について,NR,K-H,Diracの3 種類の計算から求められた全エネルギーとFig.1 における Brewer の値が Table I に示されている。

	0.0	Total E	nergies []	10 ³ cm ⁻¹]	Eng [10]amil	
Aloms	Configurations	NR	K-H	Dirac	Exp.[10 cm	
	5d ¹ 6s ²	0	0	0	0	
La	5d ² 6s ¹	-0.88	5.58	4.86	2.668	
57	5d ³	3.16	14.43	13.20	12.43	
	$4f^16s^2$	-15.73	4.33	4.54	(≤15.1)	
	4f15d16s2	0	0	0	0	
Ce	4f ¹ 5d ² 6s ¹	-0.30	6.36	5.60	2.369	
58	4f ² 6s ²	-24.27	-3.94	-3.65	4.762	
Pr	4f ³ 6s ²	0	0	0	0	
59	4f ² 5d ¹ 6s ²	31.63	10.55	10.22	(4.0)±1	
Nd	4f ⁴ 6s ²	0	0	0	0	
60	4f35d16s2	38.1	16.2	15.8	6.764	
Pm	4f ⁵ 6s ²	0	0	0	0	
61	4f45d16s2	43.82	20,98	20.54	(8.0)±1	
Sm	4f ⁶ 6s ²	0	0	0	0	
62	4f ⁵ 5d ¹ 6s ²	48.96	25.12	24.69	15.5	
Eu	4f ⁷ 6s ²	0	0	0	0	
63	4f65d16s2	53.6	28.7	23.22	25.1	
	4f ⁷ 5d ¹ 6s ²	0	0	0	0	
Gd	4f 75d26s1	4.94	13.53	12.56	6.378	
64	4f ⁸ 6s ²	-57.73	-31.82	-26.12	10.947	

Brewer の値については IV を参照されたい。この値 は Table I では Exp と表されている。全エネルギー は§3 で選ばれた配置について計算したものであり、 3種類の計算のそれぞれにおいて、実験での基底配 置における全エネルギーを基準にとっている。計算 から求められた元の全エネルギーは Table II の最 下行に示されており、Table I のものはそれらをま とめ直したものである。Table Iにおいて計算値と Brewer の値とを比較してみる。NRに比べて K-H による結果は大幅に改善されて Brewer の値に近づ いていることがわかる。Dirac ではさらに改善され ている。これより、相対論的効果の導入によって実 験結果により良く合うようになったこと、およびス ピン軌道相互作用も重要であることがわかる。両者 の一致は、Euで最も良く、LaからSmまでがその 次でこれらは同じ位に良く、Gd で最も良くない。Gd で良くないのは、スピン分極の効果を考慮していな いためであると推測される。何故なら、 II でも指摘 したように、この効果は中央の Gd において最も大 きいからである。アクチニド原子では、シリーズの 始まりの方で比較的良い一致を示したが[4],希土 類原子ではそうはなっていない。また, Am について は比較的良い一致が得られていたが、これは Eu と 同じ列にあることと関連があるように思われる。こ れらの結果は、希土類原子ではアクチニド原子に比 べ軌道分極の効果が大きいことを示唆しているよう

秋田高専研究紀要第33号

Fig. 2 The total energies calculated for the intermediate configurations between two selected ones are plotted for first eight atoms in the lanthanum series as a function of x indicating the intermediate degree. The total energies calculated for the experimental ground configuration are chosen as origin for each calculation in NR, K-H and Dirac. (a) La, (b) Ce, (c) Pr, (d) Nd, (e) Pm, (f) Sm, (g) Eu, (h) Gd.

-104 -

に思われる。

次に,計算による基底配置は実験による基底配置と 一致するのか、ということについて議論する。Table I のCeとGdについての計算結果は、4fn+16s²型 の配置の方が実験による基底配置4fⁿ5d¹6s²よりエネ ルギーが低いことを示している。従って、CeとGd については§1 で述べたまずい点1)は、量的には相当 改善はされているが質的には改善されていないこと がわかる。この2つを除いた他の原子では、計算に よる基底配置は Table I からは実験による基底配置 に一致しているように見える。これが本当なのかを 調べるため, 例えば La について, 4f*5d1-*6s2という 配置を考え, xを0から1まで連続的に変化させて 全エネルギーを計算してみた。そして途中のxの値 でそれが極小を持つかどうかを調べた。このような ことを8個の原子について行いその結果をFig.2 に示した。この図より、La、Ce、Pr については、x が0と1の中間の値で全エネルギーが極小となり, 計算上の基底配置は実験によるものと一致しないこ とがわかる。その x の値は、 Ce では K-H について dx = 0.61, Dirac についてdx = 0.60である。 Dirac ではスピン軌道相互作用が入っている分だけ 極小を与える x の値が、僅かに実験による基底配置 の側へ近づく傾向を示しているが、それらのxの値 の差⊿x = 0.01の値は Th(⊿x = 0.12)のものに 比べればかなり小さく[4],当然予想されるように アクチニド原子におけるよりスピン軌道相互作用の 効果が小さいことがわかる。ただし、Fig.2からわか るように、EuとGdではK-HとDiracによる結果 は La~Sm に比べて差が大きく,スピン軌道相互作 用の効果が大きいことを示している。

今回の計算方法においても IV におけると同様, 全エネルギーが最低となるときの配置を LDA 基底 配置 (LDA ground con.) とよぶことにする[6]。 Table II には,それぞれの原子についてこの LDA 基底配置を表す x の値も示されている。ただし,そ こに示した LDA 基底配置が正しいという証明は今 のところない。何故なら、ここでは4 $f^{n+1}6s^2$ 型と4 f^{n5} d¹6s²型の配置の間でのみ x を変化させて全エネル ギーを調べただけだからである。

4.2 軌道のエネルギー準位

La から Gd までの 8 原子についての原子構造計 算から得られた軌道エネルギーの値を Table II に 示した。ここでは,冒頭の2),3)で述べた問題点に ついて論ずる。最初に La の計算結果について考察 することにする。それは Table II (a) に示されてい る。La の基底配置5d¹6s²についての軌道エネルギー の計算値を同じ表に示された実験値と比較する。 NR に比べて,相対論的効果が入った K-H と Dirac の場合の結果が実験値にかなり近づいてより良く合 うようになっていることがわかる。特に内殻軌道に ついての一致が良く,外殻になるにつれて誤差は大 きくなっていく傾向にある。ただし,4f,5d,6s な ど高いところにある準位については,スペクトル解 析等の困難なこともあって,実験値もそんなに信頼 できるものではないことに注意するべきである。

次に、La(5d¹6s²)の4f, 5d, 6s 軌道のエネルギー 準位について NR, K-H, Dirac の3種類の計算によ る違いを見てみる。NR では $E_{4f} < E_{5d} < E_{6s}$ とな っているが, K-H では6s 準位は下降, 4f, 5d 準位は 上昇してそれらの間に変化が起きて $E_{41} < E_{6s} <$ Esd となっている。これは相対論的効果における質 量速度項により ns 準位 (n = 1~6) が降下し、その 結果生ずる核電荷の遮蔽により4f,5d準位が上昇し たためである[3]。中でも、4f準位の上昇が大きい。 しかし、計算において空と仮定した4f準位は、依然 として占有されている6s, 5d 準位の下に位置してい るので、2)で述べた矛盾は質的には5dと6s準位の 位置が逆転してはいるものの改善はされてはいな い。それでも、これらの準位の存在する範囲は、4f準 位の大きい上昇を反映して0.3 Rydから0.1 Rydへ と相当小さくなっており、量的にはかなり改善され たと言える。Dirac の場合は、4f と5d 軌道がスピン 軌道相互作用により分裂しただけで,K-Hの結果か ら2)における矛盾を解消するほどの大きい変化はな く、今回の計算における近似の範囲内では相対論的 効果を考慮しても問題はまだ残っている。ただし, 軌道エネルギー準位の実験との一致という3)の意味 においては,スピン軌道相互作用による分裂は重要 である。

La 以外の原子についても、特に内殻軌道につい ては La について得られたのと似た結果になってい る。しかし、4f、5d、6s 軌道については多少異なっ ている。Ce の実験による基底配置4f¹5d¹6s²では、NR から K-H へ移ったときの準位の位置関係の変化は La のときと同じである。Pr(4f³6s²)では NR で $E_{4f} < E_{6s} < E_{5d}$ となっていて矛盾はないが K-H では $E_{6s} < E_{5d} < E_{4f}$ となり4f 準位が上昇し過ぎて 新たに矛盾をもたらしている。Nd から Eu までは、 NR の $E_{4f} < E_{6s} < E_{5d}$ から K - H の $E_{6s} < E_{4f} < E_{5d}$ へ変化して6s 準位が最下位となっている。しか

秋田高専研究紀要第33号

 $\begin{tabular}{ll} \hline The calculated orbital and total energies of neutral rare earth atoms due to three kinds of calculations are shown for selected and LDA ground configurations, and they are compared with the experimental orbital energies for the ground configuration except for Pm. Unit is Ryd. \end{tabular}$

1. 3	*
19	1 9
(a)	La

		5d	¹ 6s ²		LDA gr	LDA ground con.: 4f* 5d 1** 6s ²			4f ¹ 6s ²		
$-E_{nl}$ (Ryd)	NR	К-Н	Dirac	Exp.	NR $(x = 0.95)$	K-H (x = 0.35)	Dirac $(x = 0.34)$	NR	K-H	Dirac	
1s _{1/2}	2711.3	2843.5	2843.0	2867.5	2710.8	2843.4	2842.8	2710.8	2843.1	2842.5	
2s _{1/2}	419.75	452.69	452.54	462.0	419.21	452.50	452.36	419.18	452.22	452.07	
2p _{1/2}	200 74	405.00	426.98	434.3	200.00	105 82	426.80	202.10	405.26	426.53	
2p _{3/2}	390.74	405.82	396.66	404.3	396.20	405.03	396.48	390.18	405.30	396.20	
3s _{1/2}	89.794	96.869	96.823	100.8	89.173	96.649	96.609	89.145	96.331	96.282	
3p1/2	70.070		86.029	89.2	30.050	01 700	85.816	70.007	01 000	85.491	
3p3/2	19.873	81,919	80.121	83.2	79.256	81.700	79.907	19.221	81.383	79.581	
3d3/2	01.005	60 417	61.144	63.1	50 707	00.000	60.934	00 000	50.000	60.613	
3d _{5/2}	61.335	60.417	59.879	61.7	00.727	60.200	59.668	60.699	59.888	59.347	
4s1/2	18.079	19.605	19.588	20.3	17.529	19.403	19.392	17.503	19.108	19.089	
4p _{1/2}			15.616	15.6	10.070		15.424	10.017	11057	15.125	
4p3/2	14.414	14./41	14.350	14.5	13.8/3	14.545	14.161	13.847	14.257	13.867	
4d _{3/2}	7	7 7000	7.8283	7.7	2 4770	2 5 6 6 6	7.6480	7.1500	7.0544	7.3679	
4d5/2	7.9937	7.7082	7.6086	7.7.	1.4//8	7.5230	7.4296	7.4532	7.2511	7.1514	
4f _{5/2}	0.00000		0.42107		0.03053	0.07000	0.28674	0.05000	0.00000	0.08868	
4f _{7/2}	0.66962	0.417/1	0.40054		0.27057	0.2/936	0.26752	0.25202	0.08699	0.07338	
5s1/2	2.7205	2.9448	2.9380	2.9	2.5014	2.8592	2.8557	2.4901	2.7297	2.7236	
Sp1/2		1 7000	1.8505				1.7825			1.6734	
5p3/2	1 1./1//	1./226	1.6614	1.5	1.5380	1.6556	1.5987	1.5286	1.5544	1.4983	
5d3/2			0.30371				0.27842			0.24071	
5d5/2	0.34231	0.29782	0.28984		0.26646	0.2/199	0.26589	0.26253	0.23607	0.23037	
6s _{1/2}	0.32758	0.34470	0.34375		0.30715	0.33651	0.33602	0.30594	0.32460	0.32387	
-Etosal (Ryd)	16437.5923	16976.2123	16984.6815		16437.7361	16976.2314	16984.6998	16437.7357	16976.1728	16984.6401	

(b) Ce

		4f 15	d ¹ 6s ²		LDA gro	ound con.: 4f ^{1+*}	4f ² 6s ²		
$-E_{nl}$ (Ryd)	NR	К-Н	Dirac	Exp.	NR (x = 1.0)	K-H (x = 0.61)	Dirac $(x = 0.60)$	К-Н	Dirac
1s _{1/2}	2812.4	2955.0	2954.3	2979.1	2811.9	2954.7	2954.1	2954.5	2953.9
2s12	437.45	473.14	472.98	482.7	436.89	472.83	472.67	472.67	472.50
2p1/2	412.02	100.04	446.75	454.4	112.20	100 50	446.45	400.00	446.29
2p _{3/2}	413.93	423.84	413.97	421.94	413.39	423.53	413.67	423.37	413.50
3s1/2	94.15	101.93	101.87	106.0	93.512	101.57	101.52	101.38	101.32
3p1/2	02.050	06.060	90.745	94.1	02 222	05 002	90.392	05 715	90.198
3p1/2	83.958	86.263	84.306	87.6	83.322	85.903	83.951	85.715	83.757
3d3/2	(4.007	(2.001	64.782	66.8	(1 200	(2) (2)	64.433	(2.451	64.242
3d5/2	04.907	03.991	63.398	65.4	04.280	03.030	63.048	03.431	62.856
4s17	18.944	20.664	20.643	21.7	18.375	20.332	20.316	20.155	20.134
4p1/2	15.140	15.540	16.511	16.9	14 502	15 005	16.189	15.052	16.010
4p _{3/2}	15.142	15.549	15.118	15.7	14.585	15.225	14.802	15.053	14.625
4d3/2	0.4600	0 1004	8.3235	8.7	7.0074	7 0055	8.0211	7 7015	7.8516
4d5/2	8.4028	8.1924	8.0796	8.5	7 1.9214	7.8855	7.7793	1.1215	7.6110
4f5/2	0.75024	0 40264	0.49670	0.50	0.22440	0.05775	0.26490	0 12541	0.13888
4f _{7/2}	0.75034	0.49304	0.47208	0.50	0.32440	0.25775	0.24255	0.15541	0.11825
5s1/2	2.8110	3.0672	3.0591	3.3	2.5805	2.9212	2.9172	2.8382	2.8327
5p1/2	1 7(00	1 7940	1.9235	2.0	1 5900	1 ((00	1.8053	1 (029	1.7344
5p3/2	1.7698	1.7840	1.7170	2.0	1.5800	1.6689	1.6083	1.6028	1.5428
5d1/2	0.04000	0.00710	0.30335		0.0(107	0.05000	0.25958	0.00040	0.23402
5d5/2	0.34220	0.29/19	0.28851		0.26197	0.25303	0.24723	0.22842	0.22320
6s1/2	0.33210	0.35084	0.34979		0.31045	0.33636	0.33598	0.32729	0.32692
-Etotal (Ryd)	17129.2154	17710.2918	17719.7875		17129.4367	17710.3473	17719.8412	17710.3277	17719.8208

			1
	0001	111111/	100
	(())))	111118	·(1)
. ^	0011		eres !

(c) Pr

	4f ³ 6s ²		LDA g	LDA ground con.: 4f ^{3-*} 5d [*] 6s ²			4f ² 5d ¹ 6s ²		
$-E_{ni}$ (Ryd)	К-Н	Dirac	Exp.	$\frac{NR}{(x=0)}$	K-H $(x = 0.18)$	Dirac $(x = 0.18)$	NR	К-Н	Dirac
1s12	3068.4	3067.7	3093.1	2914.8	3068.5	3067.8	2915.3	3068.9	3068.2
2s12	493.62	493.44	504.7	454.93	493.70	493.51	455.49	494.10	493.92
2p12		466.55	474.68	400.00	441.04	466.62	401.47	440.04	467.02
2p12	441.76	431.15	439.63	430.92	441.84	431.22	431.47	442.24	431.62
3s12	106.53	106.46	111.4	97.927	106.61	106.55	98.563	107.08	107.01
3p1/2		95.003	98.7	07.400	00.005	95.088	00.005	00 071	95.552
3p10	90.120	87.993	91.8	87.463	90.205	88.079	88.095	90.071	88.544
3d1/2		67.928	70.3			68.012	00 500	07.040	68.471
3ds/2	67.068	66.416	68.9	67.906	67.152	66.500	68.530	67.612	66.960
4s1/2	21.205	21.180	22.7	19.230	21.286	21.261	19.798	21.718	21.692
4p1/2		16.894	17.6	15.000	15.000	16.973	15 000	10044	17.399
4P12	15.843	15.375	16.3	15.302	15.922	15.453	15.860	16.344	15.871
4d1/2		8.3259	9			8.4013	0.0000	0.0500	8.8029
4ds/2	8.1831	8.0596	8.8	8.3837	8.2584	8.1345	8.9200	8.6299	8.5333
4fs7		0.18516				0.24319		0.55500	0.55818
4f20	0.18121	0.16005		0.38349	0.23937	0.21734	0.81950	0.55539	0.52926
5s12	2.9476	2.9414	· 3.1	2.6635	2.9873	2.9806	2.8968	3.1838	3.1744
5010		1.7959	84			1.8292			1.9917
5010	1.6522	1.5873	1.7	1.6255	1.6843	1.6180	1.8182	1.8401	1.7673
5d12		0.22929		Shiperts.		0.24131			0.30112
Sden	0.22328	0.21797		0.25929	0.23526	0.22921	0.34060	0.29466	0.28535
6s _{1/2}	0.33181	0.33148		0.31442	0.33649	0.33599	0.33639	0.35676	0.35561
-Etomi(Ryd)	18463.7862	18474.4115		17837.8831	18463.7899	18474.4156	17837.5947	18463.6900	18474.3183

Z 13	BT 1
10	N NIA
1	

	5	LDA ground co	on.: 4f **5d *6s ²	_	1	4f35d16s2	
-E _{nt} (Ryd)	$\frac{NR}{(x=0)}$	$\begin{array}{c} \text{K-H} \\ (x=0) \end{array}$	Dirac $(x = 0)$	Exp.	NR	К-Н	Dirac
1s _{1/2}	3019.5	3184.8	3184.0	3209.6	3020.0	3185.2	3184.5
2s1/2	473.31	515.10	514.89	525.5	473.87	515.59	515.38
2p12	440.70	100.55	487.32	495.56		401.00	487.79
2p _{3/2}	448.79	460.55	449.14	457.76	449.34	401.03	449.62
3s1/2	102.40	111.78	111.71	116.5	103.04	112.34	112.26
3p1/2	01.000	04.000	99.911	103.9	00.000	05 152	100.46
3p3/2	91.660	94.600	92.293	96.1	92.293	95.153	92.847
3d1/2	71 507	70 740	71.676	74.2	70.011	71 000	72.221
3d5/2	/1.58/	10.142	70.027	72.6	72.211	71.289	70.574
4s1/2	20.078	22.259	22.230	23.8	20.647	22.777	22.746
4p1/2	10010	10.000	17.779	18.5	10 570	17124	18.288
4p _{3/2}	16.012	16.629	16.117	17.1	1 10.573	17.134	16.617
4d3/2	0.0000	0.6250	8.7908	9.3	0.2700	0.1170	9.2735
4d5/2	8.8298	8.6350	8.4974	9.2	9.3700	9.11/9	8.9768
4f _{5/2}	0.40000	0.01000	0.22306	0.0	0.07075	0.00000	0.60919
4f7/2	0.43306	0.21890	0.19341	0.0	0.87975	0.00008	0.57566
5s1/2	2.7421	3.0539	3.0469	3.3	2.9795	3.2973	3.2867
5p1/2	1 0070	1 0007	1.8547	2.0	1.0041	1 0000	2.0571
5p32	1 1.00/3	1.6987	1.6286	2.0	1.8641	1.8930	1.8144
5d3/2	0.05500	0.01750	0.22380		0.00704	0.00007	0.29754
5d5/2	0.25532	0.21758	0.21217		0.33794	0.29087	0.28097
6s1/2	0.31810	0.33635	0.33602		0.34052	0.36248	0.36121
-Etotal (Ryd)	18563.2301	19236.8235	19248.6959		18562.8829	19236.6761	19248.5519

(continued)

1	LDA g	ound con.: 4f	*5d*6s ²	4f *5d 16s ²				
-E _{st} (Ryd)	$\frac{NR}{(x=0)}$	$\begin{array}{c} \text{K-H} \\ (x=0) \end{array}$	Dirac $(x = 0)$	NR	К-Н	Dirac		
1s _{1/2}	3126.0	3303.7	3302.9	3126.6	3304.2	3303.3		
2s1/2	492.02	537.11	536.88	492.59	537.60	537.37		
2p1/2	400.00	170 70	508.61	403.55	400.01	509.09		
2p3/2	400.99	4/9./3	467.48	407.55	480.21	467.97		
3s _{1/2}	106.94	117.16	117.07	107.57	117.72	117.63		
3p1/2	05.00	00.100	104.929	00.555	00 717	105.483		
3p3/2	95.92	99.160	96.663	96.555	99.717	97.220		
3d3/2	75 000	74.470	75.489		75.050	75.050	75 000	76.038
3d _{5/2}	1 15.329	14.418	73.696	15.950	75.029	74.246		
4s _{1/2}	20.922	23.322	23.288	21.495	23.845	23.809		
4p1/2	10717	17.115	18.671	17.000	17000	19.186		
4p3/2	1 16./1/	17.415	16.856	17.283	17.926	17.362		
4d _{3/2}	0.0700	0.0010	9.2507	0.0157	0.5700	9.7398		
4d _{5/2}	9.2700	9.0810	8.9284	9.8157	9.5708	9.4142		
4f _{5/2}	0.47500	0.04040	0.25378	0.00077	0.04005	0.65205		
4f _{7/2}	1 0.47520	0.24948	0.21926	0.93277	0.04985	0.61359		
5s _{1/2}	2.8176	3.1584	3.1506	3.0601	3.4095	3.3976		
5p _{1/2}	1 7000	1 7400	1.9116	1 0001	1.0400	2.1210		
5p3/2	1 1.7066	1.7429	1.6674	1.9081	1.9439	1.8592		
5d3/2			0.21773			0.29313		
5d3/2	0.25046	0.21132	0.20580	0.33449	0.28625	0.27576		
6s _{1/2}	0.32157	0.34081	0.34046	0.34457	0.36819	0.36679		
Emmi(Ryd)	19305.6304	20029.7121	20042.9560	19305.2309	20029.5208	20042.768		

(f) Sm

		LDA ground co	on.: 4f ^{6-x} 5d ^x 6s ²			4f 55d16s2	
-Eni (Ryd)	$\frac{NR}{(x=0)}$	$\begin{array}{c} \text{K-H} \\ (x=0) \end{array}$	Dirac $(x = 0)$	Exp.	NR	К-Н	Dirac
1s1/2	3234.5	3425.2	3424.3	3449.6	3235.0	3425.6	3424.7
2s1/2	511.08	559.66	559.41	570.3	511.65	560.16	559.90
2p1/2	405.54	400.01	530.44	540.6	408.10	400.00	530.92
2p _{3/2}	485.54	499.31	486.18	495.0	480.10	499.80	486.67
3s1/2	111.54	122.65	122.55	127.6	112.18	123.21	123.11
3p _{1/2}	100.25	102.01	110.06	113.8	100.00	104.27	110.62
3p _{3/2}	100.25	103.81	101.11	104.9	100.89	104.37	101.67
3d3/2	70 100	70.070	79.373	82.1	20 700	70.025	79.926
3d _{5/2}	79.130	18.219	77.426	79.9	19.100	78.835	77.980
4s1/2	21.766	24.399	24.360	26.0	22.345	24.927	24.886
4p1/2	17 400	10.004	19.573	20.0	17000	19 700	20.094
4p _{3/2}	17.422	18.204	17.596	18.6	17.993	18.722	18.108
4d _{3/2}	0 7060	0.5041	9.7085	10.7	10.0500	10.0011	10.2044
4d _{5/2}	9.1009	9.3241	9.3555	9.8	10.2593	10.0211	9.8481
4f5/2	0.51101	5007007	0.27836	1.1	0.07070	0.60604	0.68808
4f7/2	0.51121	0.2/39/	0.23872		0.97973	0.08024	0.64432
5s1/2	2.8910	3.2622	3.2535	2.9	3.1391	3.5212	3.5080
5p1/2	1 7440	1 7055	1.9675	1.0	1.0507	1 0024	2.1841
5p3/2	1.7440	1./855	1.7044	1.9	1.9507	1.9934	1.9024
5d _{3/2}	0.04400	0.00467	0.21117		0.22041	0.00000	0.28802
5d _{5/2}	0.24498	0.20467	0.19911		0.33041	0.28096	0.26996
6s1/2	0.32490	0.34517	0.34482		0.34851	0.37381	0.37229
-Ewial(Ryd)	20065.2346	20842.7265	20857.4769		20064.7882	20842.4974	20857.2522

⁽continued)

1 1	
(~)	En
(0)	C 11

-Enl(Ryd)		LDA ground co	on.: 4f ⁷ *5d*6s ²	4f ⁶ 5d ¹ 6s ²			
	NR (x=0)	K-H (x=0)	Dirac (x=0)	Exp.	NR	К-Н	Dirac
1s _{1/2}	3344.7	3549.3	3548.3	3572.1	3345.2	3549.7	3548.7
2s _{1/2}	530.48	582.78	582.50	593.3	531.06	583.28	582.99
2p1/2	504.44	519.30	552.82	562.2	505.00	519.79	553.30
2p32			505.25	514.1			505.73
381/2	116.22	128.27	128.17	132.8	116.86	128.84	128.73
3p12	104.6	108.54	115.33	119.0	105.29	109.11	115.88
3p _{3/2}			105.64	109.3			106.19
3d1/2	83.010	82.150	83.343	85.7	83.645	82.710	83.888
3ds/2			81.232	83.5			81.778
4s1/2	22.613	25.492	25.454	26.7	23.198	26.027	25.979
4p1/2	18.12	19.000	20.497	21.2	18.706	19.524	21.016
4p3/2			18.346	19.2			18.857
4d12	10.142	9.9663	10.173	10.3	10.702	10.471	10.669
4ds/2			9.7871	10.2			10.280
4fs/2	0.54202	0.29324	0.30238		1.02147	0.71698	0.71842
4f7/2			0.25711	1.7			0.66902
5s12	2.9629	3.3659	3.3581	2.6	3.2171	3.6334	3.6186
5p1/2	1.7801	1.8268	2.0242		1 00000	2.0420	2.2470
5010			1.7412	1.8	1.9923		1.9444
Sdag	0.23904	0.19777	0.20463	12-12-C	0.32585	0.27528	0.28246
5ds/2			0.19246				0.26375
6s1/2	0.32814	0.34948	0.34922		0.35246	0.37962	0.37794
-Etotal (Ryd)	20842.1926	21676.1440	21692.5015		20841.7042	21675.8824	21692.2898

(h) Gd

-Eni (Ryd)		4f ⁷ 5	d 16s ²	LDA ground con.: 4f ^{7+s} 5d ^{1-s} 6s ²			
	NR	К-Н	Dirac	Exp.	NR (x = 1.0)	K-H (x = 1.0)	Dirac $(x = 1.0)$
1s _{1/2}	3457.3	3676.4	3675.3	3699.5	3456.8	3676.0	3674.9
2s12	550.81	606.97	606.66	617.0	550.23	606.46	606.17
2p12	524.25	540.20	576.25	584.09	523.68	539.69	575.77
2p12			525.17	533.47			524.68
3s12	121.61	134.60	134.49	138.6	120.96	134.03	133.93
3p1/2	109.76	113.94	121.28	124.5	109.11	113.37	120.73
3p1/2			110.81	113.7			110.25
3d1/2	87.593	86.657	87.939	89.6	86.954	86.092	87.391
3dso			85.655	87.3			85.105
4S10	24.055	27.146	27.099	27.5	23.464	26.604	26.568
4D10	19.422	20.334	21.962	21.4	18.838	19.803	21.436
4p1/2			19.618	20.0			19.101
4d10	11.146	10.922	11.142	10.6	10.578	10.409	10.639
4d5/2			10.718	10.4			10.218
4fs/2	1.0586	0.74272	0.74819		0.56831	0.30793	0.32202
4f20			0.69263	0.6			0.27078
5s12	3.2943	3.7463	3.7313	2.7	3.0337	3.4702	3.4631
5p12	2.0330	2.0900	2.3109		1.8150	1.8674	2.0808
5p12			1.9865	1.6			1.7769
5d3/2	0.32090	0.26923	0.27668		0.23275	0.19082	0.19789
Sd _{5/2}			0.25730				0.18578
651/2	0.35637	0.38540	0.38360		0.33126	0.35383	0.35366
Etotal (Ryd)	21636.1269	22529.9558	22548.1179		21636.6532	22530.2459	22548.3560

-109 -

し,Ndでは4fは5dのほんの僅かだけ下に位置して いてこれらの傾向における境界にあたっているよう に思われる。Gdでは相対論的効果によりこれらの 準位の間に逆転は生じていない。このように詳細に 見ると,相対論的効果は準位間の位置関係について も原子によって異なる質的変化をもたらしているこ とがわかる。

また、Table II から、La、Ce、Pr に対してのよ うに 0 < x < 1 を満たす x で LDA 基底配置が起こ るときは4f と5d 準位は非常に接近した位置にある こと、また4f、5d、6s 軌道準位の位置関係は x によ り変化することがわかる。

5. まとめと今後の課題

前論文[1]に引き続き希土類原子について相対論 的原子構造計算を行い,前回指摘した問題点に着目 しながら,軌道エネルギー準位,基底配置の型およ び励起配置のエネルギー準位などに対する相対論的 効果について調べた。その結果,確認されたことと 今後の課題を列挙する。

アクチニド原子についてと同様、電子間クーロン相互作用との複合効果として、s軌道のエネルギー準位の降下、およびそれによる外殻側の5f、6d軌道のエネルギー準位の上昇が確認された。

2) 非相対論に比べて実験に近い軌道エネルギー準 位が得られた。 3) 冒頭で述べた問題点, 1), 2)については, 質的 に改善されたが, 一部実験事実に合わないものが残 っており全面的に解決された訳ではない。しかし, 不一致のまま残ったものについても, 量的には実験 に合う方向にかなりに改善された。

4) 今後の課題は、相対論的効果に加えてスピン分 極[7]および軌道分極[8]の効果を調べ、残された 問題点の改善をはかることである。

参考文献

- 成田 章,大石浩司:秋田高専研究紀要,32, 109,1997.この論文をIIと引用する
- [2] A.E. Sandström: Encyclopedia of Physics, 30, 78, 1957, ed. Flügge, Springer-Verlag.
- [3] 樋口雅彦,長谷川 彰:新潟大学情報処理センター年報,5,3,1994.
- [4] 成田 章,大石浩司,鎌田慎也:秋田高専研 究紀要,33,89,1997.この論文を IV と引用す る。
- [5] L. Brewer: J. Opt. Soc. Am. 61, 1101, 1971;
 61, 1666, 1971.
- [6] V.L. Moruzzi, F.F. Janak and A.R. Williams: Calculated Electronic Properties of Metals, Pergamon Press Inc., 1978.
- [7] A.H. MacDonald : J. Phys. C, 16, 3869, 1983.
- [8] M.Higuchi and A. Hasegawa : J. Phys. Soc. Jpn. 66, 149, 1997.