原子構造計算 IV

- アクチニド原子に対する相対論的効果-

成 田 章·大 石 浩 司*·鎌 田 慎 也**

Atomic Structure Calculations. IV

-Relativistic effect on actinide atoms-

Akira NARITA, Hiroshi OISHI* and Shin-ya KAMADA**

(1997年11月28日受理)

The self-consistent relativistic atomic structure calculations are performed for first eight atoms of the actinide series based on the local density approximation, in which the exchangecorrelation energy due to Gunnarsson and Lundqvist is assumed, the Latter approximation is adopted and also the balanced spin configurations are assumed. The calculated results are compared with the experimental ones. For the orbital energy levels, relatively good fits with experiment are obtained. The discrepancies found in our previous work for the orbital and total energies are partly removed in quality and are also considerably improved in quantity. However, the discrepancies are still remained while reduced.

1. はじめに

本論文では,前回行ったアクチニド原子について の原子構造計算の続きを行う[1]。以下では文献 [1]をIIIと引用する。IIIでは,局所密度汎関数の 方法を用いて自己無撞着な計算を数値的に実行し た。そこでは相対論的効果は考慮しなかった。また, そのときスピン分極がない場合とHundの規則に 従うスピン分極がある場合について計算を行った。 しかし,両方の場合において計算結果にまずい点が あった。スピン分極がない場合についてその主なも のを列挙すると次のようなものである。

 5fⁿ6d¹7s²型の基底配置を持つ原子(Ac, Pa, U, Np, Cm)について、2つの電子配置(5fⁿ⁺¹7s²と5fⁿ 6d¹7s²)の全エネルギーを計算して比較したところ、 5fⁿ⁺¹7s²の方が低かった。これは、5fⁿ6d¹7s²が基底配 置であるという実験事実に矛盾する。

 AcとThについて、実験による基底配置(Ac: 6d¹7s², Th: 6d²7s²)を仮定して行った計算から得ら

* 秋田高専専攻科学生, **秋田高専学生

れた5f, 6d, 7s 準位の軌道エネルギーの順番は $E_{st} < E_{6d} < E_{7s} < 0$ であった。この結果は明らかに自己 矛盾を示している。何故なら、仮定した配置では5f 軌道は空で電子は存在していないにもかかわらず、 得られた結果ではそのエネルギー準位は、占有され ている6d, 7s 軌道の準位の下に位置しているからで ある。

- 89 -

3) ThとUについては、各軌道エネルギーの値 は実験的には X 線吸収スペクトルの解析から得ら れている[2]。実験値と計算値とを比較したところ、 あまり満足のいくものではなかった。

III では、これらの食い違いの要因として、軌道分 極や相対論的効果が考慮されていなかったことを挙 げ、相対論的効果は原子番号の増加と共に大きくな ることが知られているので特に後者が重要であるこ とを指摘し、その効果を調べることを今後の課題と しておいた。1s 軌道を回る電子の質量は、Uについ てはその静止質量の1.35倍に重くなることが知られ ている。これより相対論的効果はかなり大きいと言 える。そこで今回の原子構造計算では、相対論的効 果を取り入れた計算を行い、上に挙げた食い違いが

平成10年2月

どの程度解消されるかを実験結果との比較を行いな がら調べることにした。

2. 計算方法

今回の原子構造計算においても、III で行ったのと 同じ局所密度汎関数の方法(以下 LDA と略)に基づ いて HFS (Hartree-Fock-Slater)型の方程式を自 己無撞着に解くという計算を数値的に行う。ただし、 交換・相関エネルギーは Slater によるものではなく Gunnarsson-Lundqvist によるものを用いる。また、 Latter 近似を取り入れる。これらの方法等の詳細に ついては文献[3-9]を参照して戴きたい。

よく知られているように、相対論的効果が取り込 まれているのは Dirac 方程式であり、その効果は質 量速度項, Darwin 項およびスピン軌道相互作用の 項の3つに分類されている。質量速度項は全ての軌 道エネルギーを非相対論における場合より下げるよ うに働き、特にs軌道に対してその効果が大きくp、 d,f軌道に対する順に小さくなる。Darwin 項は殆ど s軌道に対してのみその効果を与え、エネルギー準 位を上げるように働く。スピン軌道相互作用はs軌 道には殆ど影響を与えず、p, d, f 軌道に対してはそ れぞれの準位を $j = l \pm 1/2$ に応じて2つの準位に 分裂させる。しかし、これらの効果は水素原子型の ような簡単な場合にわかっていることであって、多 電子原子においては電子間にクーロン相互作用があ るため、この多体効果と相対論的効果が組合わさっ た効果が現れると予想される。従って、一口に相対 論的効果と言っても,水素原子型の場合のように単 純ではない。原子構造計算における相対論的効果を 詳細に調べるために,以下では次の3種類の計算を 行い比較検討する。

- a) これまでと同じ非相対論的な計算[3, 4](以 下 NR と略)。
- b) 相対論的効果のうち質量速度項と Darwin 項の 効果だけを考慮しスピン軌道相互作用は取り入 れない計算(以下 K-H と略)。この場合の計算 は Koelling - Harmon に よるものを用いる [10]。それは、一電子状態を指定する量子数は a)の場合と同じく n, l, m, m_s である、という 特徴をもつ。
- c) 相対論的効果の全てを考慮した計算(以下 Dirac と略)。これについては、Loucksの著書 に記述されている Dirac 方程式を採用してそ

れを解いた[11]。量子数は n, (k)j, j, c である。 これら a), b), c)において, スピン分極は考慮しな いでパラ配置を仮定して計算する。

3. 電子配置のエネルギー準位についての値

冒頭で述べた1)について実験との詳細な比較を考 えるとき,知らなければならないことはそれぞれの 電子配置についてのエネルギー準位の実験値であ る。これは、我々の計算で得られる全エネルギーに 対応する。アクチニド系列のすべての原子について, 電子配置のエネルギー準位を Fig.1 に示した。これ は、Brewer[12]により表にまとめられたものをグラ フにしたもので、示されたデータの一部は分光学的 スペクトル解析から得られた実験値であるが、残り の半分以上は彼により分光学的実験値とアクチニド 金属の熱力学的データを組合わせて評価された値で ある。この種の評価は、Martin[13]、Nugentと Sluis[14] らによってもなされていて、殆ど同じ値が 得られている。Fig.1に示された電子配置のエネル ギー準位に対応する値には実験値と評価値があり, それらをその度に区別して言及するのは面倒なので 以下ではそれらを Brewer の値ということにする。 Fig.1では、基底配置のエネルギー準位を原点とし て測ったとき、40×10³[cm⁻¹]より低い位置に存在 する電子配置の準位のみが示されている。ただし、 各配置には Russell-Saunders の記号2S+1L」で表さ れる複数個の状態が含まれるが、その中で Hund の 規則で定められる最低エネルギーの状態の準位が示 されている。

Fig.1からわかるように、IIIで調べた電子配置5^{fn} 7s²の準位の位置は原子により様々である。Ac, Th についてはその配置の準位が基底配置よりも非常に 高いところにあり、それらの間には多くの励起配置 が存在することがわかる。本来、各配置のエネルギ 一準位について Brewer の値と比較検討しようとす るならば、図に示されたすべての配置について計算 をするべきであるが、今回の計算では2配置、つま り基底配置と励起配置の一つ、に限ることにする。 また、IIIにおいて矛盾点が多くみられたアクチニド 系列の中のシリーズ前半の原子について原子構造計 算を行う。それぞれの原子について計算を行う配置 は次のものである。

	基底配置	励起配置
Ac	$6d^17s^2$	$6d^27s^1$
Th	$6d^27s^2$	$5f^16d^17s^2$

原子構造計算 IV

Fig. 1 The lowest energy levels of each electronic configuration in all neutral actinide atoms are shown. These data are cited from Brewer's paper [12], and those without and with parentheses are, respectively, the spectroscopically determined experimental levels and the estimated ones by him. (a) $Ac \sim Cm$, (b) $Bk \sim Lr$.

- 91 -

Pa,	U, Np, Cm	$5f^n6d^17s^2$	$5f^{n+1}7s^2$
Pu.	Am	$5f^n7s^2$	$5f^{n-1}6d^{1}7s^{2}$

ここで,Acの励起配置として6d²7s¹を採用したのは5f¹7s²のエネルギー準位が非常に高いからである。

4.計算結果と考察

4.1 電子配置のエネルギー準位

それぞれの原子について、NR, K-H, Diracの3 種類の計算から求められた全エネルギーとFig.1 における Brewer の値が Table I に示されている。 Table I では Brewer の値は Exp と表されている。 全エネルギーは§3で選ばれた配置について計算し たものであり、3種類の計算のそれぞれにおいて、 実験での基底配置における全エネルギーを基準にと っている。計算から求められた元の全エネルギーは Table II の最下行に示されており、Table I のもの はそれらをまとめ直したものである。Table I にお いて計算値と Brewer の値とを比較してみる。NR に比べてK-Hによる結果は大幅に改善されて Brewer の値に近づいていることがわかる。Dirac ではさらに改善されている。これより,相対論的効 果の導入によって実験結果により良く合うようにな ったこと、およびアクチニド原子ではスピン軌道相 互作用も重要であることがわかる。両者の一致は, Ac, Pa, Th では比較的良いが、Cm については良 くない。つまり、シリーズの始まりの方では比較的 良いが、中央では良くないと言える。これはスピン 分極の効果を考慮していないためであると推測され る。何故なら、III でも指摘したように、この効果は 中央の Cm において最も大きいからである。

次に、計算による基底配置は実験による基底配置 と一致するのか、ということについて議論する。 Table I の Np と Cm についての結果は、 $5f^{n+1}7s^2$ 型 の配置の方が実験による基底配置 $5f^n6d^17s^2$ よりエネ ルギーが低いことを示している。従って、Np と Cm については\$1 で述べたまずい点1)は、量的には相当 改善されてはいるが質的には改善されていないこ とがわかる。ただし、U については、K-H では Np, Cm の場合と同様のことが見られるが、Dirac では 僅差で逆転し実験と合う基底配置が得られている。 他の原子では、計算による基底配置は Table I から は実験による基底配置に一致しているように見え る。これが本当なのかどうかを調べるために、例え ば Th について、 $5f^*6d^{2-x}7s^2$ という配置を考え、x を 0 から 1 まで連続的に変化させて全エネルギーを計

Table I The calculated total energies of selected excited configurations due to three kinds of calculations are compared with the experimental ones for the actinide atoms, in which the total energies are measured from those of the ground configuration. Unit is $10^3 \,\mathrm{cm^{-1}}$.

		Tot	- (10)-11		
Atom	Atom Conngeration	NR	K-H	Dirac	Exp. [10 ° cm
102312	6d1 7s1	0	0	0	0
Ac	6d1 7s1	-1.874	13.856	12.253	9.217
-	6d17s1	0	0	0	0
16	5f16d17s2	-38.013	0.57	2.358	7.795
	5f26d17s2	0	0	0	0
Pa	5f3 7s1	-28.324	5.968	7.478	11.445
144	5f3 6d1 7s2	0	0	0	0
0	5f4 7s1	-38.346	-1.613	0.011	7.021
	5f4 6d1 7s2	0	0	0	0
Np	5f ⁵ 7s ²	-48.098	-8.755	-7.024	(1.)±1
1920	5f ⁶ 7s ¹	0	0	0	0
Pu	5f3 6d1 7s2	57.646	15.653	13.827	6.314
	5ť 7s2	0	0	0	0
Am	5f ⁸ 6d ¹ 7s ²	67.030	22.315	11.223	(17.)±1
-	5f7 6d1 7s2	0	0	0	0
Cm	5f8 7s2	-76.29	-28.758	-17.181	1.214

算してみた。そして x の途中の値でそれが極小値を 持つかどうかを調べた。このようなことを 8 個の原 子について行いその結果を Fig. 2 に示した。この図 より, Th, Uについては, x が 0 と 1 の中間の値で 全エネルギーが極小となり, 計算上の基底配置は実 験によるものと一致しないことがわかる。その x の 値は, Th では K-H については x = 0.45, Dirac に ついては x = 0.33である。Dirac ではスピン軌道相 互作用が入っている分だけ極小を与える x の値が, 実験による基底配置の側へ近づく傾向を示してい る。Eu と Gd を除くと,希土類原子に対する K-H と Dirac による計算結果には殆ど差がないことを 考慮すれば[17], 原子番号の大きいアクチニド原子 ではスピン軌道相互作用の効果がさらに効いている ことがわかる。

今回の計算方法において、全エネルギーが最低と なるときの配置をLDA 基底配置(LDA ground con.)とよぶことにする[4]。Table II には、それぞ れの原子についてこの LDA 基底配置を表す x の値 も示されている。ただし、そこに示した LDA 基底配 置が正しいという証明は今のところない。何故なら、 ここでは§3 で選んだ 2 つの配置の間でしか全エネ ルギーを計算していないからである。

4.2 軌道のエネルギー準位

Ac から Cm までの原子についての原子構造計算 から得られた軌道エネルギーの値を Table II に示 した。ここでは, §1 の2), 3) で述べたことについて 論ずる。最初 Th の計算結果について考察すること にする。それを Table II (b) に示す。Th の基底配置 6d²7s²についての軌道エネルギーの計算値を同じ表

原子構造計算 IV

Fig. 2 The total energies calculated for the intermediate configurations between two selected ones are plotted for first eight atoms in the actinide series as a function of x indicating the intermediate degree. The total energies calculated for the experimental ground configuration are chosen as origin for each calculation of NR, K-H and Dirac. (a) Ac, (b) Th, (c) Pa, (d) U, (e) Np, (f) Pu, (g) Am, (h) Cm.

Total Energy [10³ cm⁻¹]

Total Energy [10³ cm⁻¹]

Total Energy [10³ cm⁻¹]

- 93 --

Table II The calculated orbital and total energies of neutral actinide atoms due to three kinds of calculations are shown for selected and LDA ground configurations, and they are compared with the experimental orbital energies of Th and U for the ground configuration. Unit is Ryd.

	6d ¹ 7s ²	LDA gr	ound con. : 6d 1	** 7s ^{2-x}	6d ² 7s	
-E [Ryd]	NID	NR	K-H	Dirac	V II	D:
	NK	(x = 1.00)	(x = 0.00)	(x = 0.00)	к-н	Dirac
1s _{1/2}	6886.3	6886.2	7857.7	7850.5	7857.7	7850.5
2s12	1185.3	1185.2	1449.8	1447.9	1449.8	1447.8
2p _{1/2}	1145 6	1145.5	1216.9	1394.7	1716.9	1394.6
2p _{3/2}	1145.0	1145.5	1210.8	1156.0	1210.8	1155.9
3s1/2	294.72	294.60	361.60	360.98	361.55	360.92
3p1/2	275 20	275.26	206 45	336.86	206 20	336.80
3p _{3/2}	215.39	275.20	290.43	282.35	290.39	282.29
3d3/2	220.16	220.04	227.21	243.65	227 16	243.59
3d _{5/2}	239.10	239.04	237.21	232.40	237.10	232.34
4s12	72.394	72.271	89.875	89.657	89.825	89.598
4p1/2	(2 (0)	62 470	60 577	78.917	60 507	78.858
4p _{3/2}	03.001	03.478	08.377	64.935	08.527	64.876
4d1/2	47.010	17.000	46.242	47.682	46 101	47.622
4d5/2	47.218	47.090	40.242	45.090	40.191	45.031
4f5/2	24 (22	24 511	22.205	22.456	22.155	22.397
4f7/2	24.033	24.511	22.205	21.804	22.155	21.745
5s _{1/2}	15.500	15.378	19.383	19.300	19.332	19.241
5p1/2	12 204	12.092	12.025	15.250	12 995	15.191
5p3/2	12.204	12.062	12.955	12.092	12.005	12.033
5d3/2	6 5170	6 2060	5 0700	6.2007	5 0105	6.1412
5d _{5/2}	0.5179	0.3900	5.9700	5.7445	5.9195	5.6850
5f _{5/2}	0 49472	0 26055	0.02570	0.08404	0.06425	0.06373
5f7/2	0.40475	0.30933	0.08570	0.06545	0.00425	0.06317
6s12	2.4601	2.3455	3.0746	3.0472	3.0251	2.9892
6p1/2	1 5521	1 4457	1 5596	1.9209	1 5141	1.8659
6p3/2	1.5551	1.4452	1.5500	1.4195	1.5141	1.3687
6d3/2	0 22110	0.26026	0 22791	0.24850	0.21600	0.22154
6d5/2	0.55110	0.20030	0.25781	0.22201	0.21009	0.19834
7s _{1/2}	0.31166	0.28487	0.36246	0.35903	0.34918	0.34350
-E mail [Ryd]	47437.0354	47437.0525	51385.2979	51549.9680	51385.1716	51549.8563

(a) Ac

(b) Th

		6d ²	¹ 7s ²		LDA gro	und con. : 5f *	6d ²⁻⁴ 7s ²	5f ¹ 6d ¹ 7s ²	
-Eni[Ryd]	ND	V II	Disco		NR	NR K-H			D'
	NK	К-Н	Dirac	Exp.	(x = 1.00)	(x = 0.45)	(x = 0.33)	К-Н	Dirac
1s _{1/2}	7049.0	8073.2	8065.4	8075.2	7048.6	8073.0	8065.3	8072.9	8065.2
2s _{1/2}	1216.8	1496.2	1494.1	1507.7	1216.4	1496.1	1494.0	1495.9	1493.8
2p1/2	1176 5	1051.4	1439.8	1450.7	11761	1051.2	1439.7	1051.1	1439.5
2p3/2	11/0.5	1251.4	1187.6	1200.5	11/6.1	1251.3	1187.5	1251.1	1187.3
3s1/2	304.24	375.06	374.39	381.6	303.82	374.91	374.27	374.73	374.06
3p _{1/2}	204 50	206.91	349.72	355.6	204.17	206.65	349.61	206 40	349.40
3p3/2	284.39	500.81	291.96	297.9	284.17	300.05	291.85	306.48	291.64
3d3/2	247 77	245 70	252.56	256.0	247.25	245 62	252.45	245.46	252.24
3d5/2	247.77	243.78	240.71	245.5	247.35	245.63	240.59	245.46	240.38
4s1/2	75.705	94.330	94.085	97.7	75.295	94.176	93.972	94.004	93.763
4p1/2	((707	70.007	83.065	85.4	(()))	71 072	82.952	71 701	82.743
4p _{3/2}	00.727	12.021	68.159	70.8	00.317	/1.8/3	68.047	/1./01	67.839
4d1/2	10.007	40.005	50.505	52.4	10 577	10.000	50.393	48.659	50.184
4ds/2	49.987	48.985	47.749	49.8	49.577	48.830	47.637		47.429
4fs/2	26.021	24 200	24.569	24.8	26.450	21152	24.455		24.245
4f7/2	20.8/1	24.309	23.866	24.6	20.458	24.153	23.752	23.980	23.543
5s1/2	16.647	20.885	20.787	20.9	16.262	20.734	20.676	20.565	20.471
5p1/2	12 220	14.067	16.584	16.5	10.000	12.010	16.475	10.050	16.271
5p32	15.258	14.007	13.146	12.8	12.800	13.919	13.039	13.755	12.840
5d3/2	7 2025	6 7600	7.0084	5.8	6.0654	((222	6.9068	C MCA	6.7167
5d3/2	1.3235	0.7009	6.5034	5.8	0.9034	6.6222	6.4033	0.4001	6.2157
5f _{5/2}	0.95477	0 27154	0.36557		0.507(1	0.20076	0.29969	0 10044	0.17859
5f7/2	0.85477	0.37134	0.31721		0.59761	0.28076	0.25352	0.18044	0.13730
6s1/2	2.7336	3.4658	3.4284	3.8	2.5564	3.3770	3.3649	3.2744	3.2431
6p1/2	1 7591	1 7040	2.2131	3.2	1 6122	1 7206	2.1592	1 (522	2.0551
6p3/2	1.7581	1./949	1.6284	3.2	1.0132	1.7290	1.5848	1.0332	1.5002
6d3/2	0.40250	0 20706	0.31049	0.1	0.72916	0.07428	0.29293	0.24726	0.25934
6d5/2	0.40259	0.29796	0.27323	0.1	0.33816	0.2/438	0.25816	0.24726	0.22945
7s1/2	0.33186	0.39752	0.39197		0.31611	0.38706	0.38492	0.37405	0.37030
-E [Rvd]	48711.7547	52872.1998	53050.3251		48712.1013	52872.2145	53050.3330	52872.1946	53050.3036

(continued)

	5f ² 60	1 ¹ 7s ²	LDA grou	nd con. : Sf ^{2+x}	5f ³ 7s ²		
- <i>E</i> _{nt} [Ryd]	NR	К-Н	$\frac{NR}{(x = 1.00)}$	K-H (x = 0.07)	$\frac{\text{Dirac}}{(x=0.00)}$	К-Н	Dirac
15.0	7212.8	8292.4	7212.4	8292.4	8284.1	8292.2	8283.9
2s10	1247.8	1543.1	1247.4	1543.0	1540.8	1542.8	1540.6
2p10	1000 0	1205.0		1005.0	1485.3	1005.6	1485.0
2p12	1207.0	1285.8	1206.6	1285.8	1218.9	1285.6	1218.7
3510	313.01	388.14	312.61	388.12	387.41	387.89	387.16
3p10		246.62			362.20		361.95
3010	293.05	316.63	292.65	316.61	301.01	316.38	300.77
3d12	200 (1)	252 20	255.25	000 00	260.91	050 50	260.66
3dsn	255.64	253.78	255.25	253.76	248.42	253.53	248.18
4510	78.206	98.180	77.816	98.159	97.915	97.930	97.669
4D10	(0.0.10	R1 005	10 150	7 4 99 4	86.611		86.365
4P10	69.042	74.825	68.653	74.804	70.732	74.576	70.486
4d10	C1 0.10	51 DCD		C1 000	52.674	50.010	52.428
4dso	51.943	51.060	51.553	51.038	49.746	50.810	49.500
4fsa					26.011		25.763
4fra	28.288	25.732	27.895	25.710	25.256	25.481	25.008
5510	17.000	21.716	16.629	21.695	21.610	21.469	21.367
5p10	10.100		10.100	11500	17.259		17.017
5p10	13.493	14.527	13.126	14.506	13.540	14.284	13.303
5d12	2 2025	(0172	20100	6 0076	7.1881	6 6062	6.9605
5ds12	1.3925	6.9173	7.0426	0.8970	6.6410	6.6867	6.4162
Sfsa	0 70715	0.0(101	0.44510	0.04000	0.25909	0.10052	0.11165
5f ₁₀	0.70315	0.26131	0.44512	0.24798	0.20788	0.10953	0.07084
6s10	2.6420	3.4464	2.4550	3.4331	3.4111	3.2898	3.2609
6p1/2		1 7067	1.5101	1 71 50	2.1658	1 (000	2.0367
6p1/2	1.6652	1.7257	1.5101	1./158	1.5594	1.6082	1.4545
6d1/2	0.04000	0.04000	0.00000	0.04670	0.26216	0.01044	0.22352
6ds/2	0.34237	0.24922	0.27373	0.24570	0.22999	0.21044	0.19802
7s12	0.32002	0.38207	0.30028	0.38031	0.37804	0.36195	0.36018
E [Rvd]	50006.7304	54388.2294	50006.9887	54388,2297	54580,7725	54388,1750	54580.704

(d) U

		5f3 6	d ¹ 7s ²		LDA grou	nd con. : 5f 3+4	6d1-x7s2	5f ⁴ 7s ²	
-E , [Ryd]	NID	W 11	D'	P	NR	K-H	Dirac		
	NK	NK K-H	Dirac	Exp.	(x = 1.00)	(x = 0.60)	(x = 0.50)	K-H	Dirac
1s _{1/2}	7378.8	8516.4	8507.5	8514.7	7378.4	8516.2	8507.4	8516.1	8507.2
2s1/2	1279.6	1591.4	1588.9	1602.6	1279.2	1591.2	1588.8	1591.1	1588.7
2p _{1/2}	1020.2	1221.1	1532.2	1542.2	1227.0	1220.0	1532.0	1220.9	1531.9
2p _{3/2}	1230.5	1238.3 1321.1	1251.0	1264.2	1257.9	1320.9	1250.8	1320.8	1250.7
3s1/2	322.31	401.86	401.07	408.5	321.90	401.67	400.91	401.57	400.78
3p1/2	202.04	226.02	375.29	381.4	201.62	226 75	375.14	226.64	375.01
3p _{3/2}	302.04	520.95	310.51	316.6	501.02	320.75	310.36	320.04	310.22
3d3/2	264.02	262.20	269.70	273.9	262.62	262.02	269.54	261.01	269.41
3d _{5/2}	204.03	202.20	256.55	261.5	203.02	202.02	256.40	201.91	256.27
4s12	81.13	102.44	102.14	105.5	80.729	102.24	101.99	102.14	101.85
4p1/2	71 707	77 076	90.549	92.3	71 270	77 701	90.396	77 697	90.266
4p3/2	/1./05	11.970	73.640	76.6	11.579	11.191	73.487	77.687	73.357
4d3/2	54 222	52 460	55.176	57.3	52 010	52 204	55.022	53.180	54.892
4d _{5/2}	54.525	55.409	52.067	54.1	55.919	55.284	51.914		51.784
4f5/2	20 122	27 496	27.779	28.4	20 724	27 200	27.625	27.196	27.494
4f _{7/2}	50.152	27.400	26.969	27.9	29.124	27.500	26.815		26.684
5s _{1/2}	17.722	22.863	22.745	23.6	17.338	22.680	22.593	22.577	22.465
5p1/2	14 110	15 292	18.240	18.6	12 721	15 100	18.090	15 001	17.962
5p3/2	14.110	15.202	14.217	14.5	15.751	15.102	14.070	15.001	13.944
5d3/2	7 9055	7 2476	7.6391	7.2	7 4420	7 1766	7.4976	7 0707	7.3761
5d52	1.8055	1.5470	7.0441	7.2	1.4423	7.1700	6.9043	1.0191	6.7842
5f5/2	0.90262	0 33593	0.33304		0.52014	0.21506	0.23429	0 14605	0.15028
5f7/2	0.00303	0.33362	0.27229		0.52314	0.21500	0.17707	0.14033	0.09724
6s _{1/2}	2.7204	3.6076	3.5681		2.5271	3.4900	3.4735	3.4209	3.3897
6p1/2	1 7117	1 7888	2.2674	2.2	1 5510	1 6005	2.1852	1 6461	2.1120
6p3/2	1./11/	1.7000	1.6095	2.2	1.5510	1.0995	1.5425	1.0401	1.4822
6d3/2	0 34466	0 24856	0.26214	0	0.27364	0 21727	0.23572	0 19936	0.21296
6d5/2	0.54400	0.24050	0.22818	0	0.27504	0.41747	0.20630	0.19950	0.18775
7s _{1/2}	0.32351	0.38937	0.38497		0.30343	0.37269	0.37247	0.36221	0.36077
-E total [Ryd]	51321.0372	55933.9309	56141.9728		51321.3868	55933.9557	56141.9889	55933.9456	56141.9727

⁽continued)

- 1	B.T.
- C	i Nn
	110

		5f* 6d1 7s2		LDA ground con. : 5f ^{5-x} 6d ^x 7s ²				
-E _{nt} [Ryd]	NID	V 11	Dises	NR	K-H	Dirac		
	NK	к-п	Dirac	(x = 0.00)	(x = 0.00)	(x = 0.00)		
1s _{1/2}	7546.7	8745.0	8735.5	7546.3	8744.7	8735.2		
2s12	1311.8	1640.9	1638.3	1311.4	1640.6	1638.0		
2p1/2	1270.0	1256.0	1580.3	1260.6	1356.6	1580.0		
2p3/2	12/0.0	1330.9	1283.5	1209.0	1330.0	1283.2		
3s12	331.73	415.91	415.05	331.30	415.59	414.74		
3p1/2	211 12	227 40	388.71	210 71	227.09	388.40		
3p3/2	511.15	337.40	320.13	510.71	337.08	319.82		
3d3/2	272 54	270 74	278.61	272.11	270.42	278.30		
3d5/2	212.34	270.74	264.78	272.11	270.42	264.47		
4s1/2	84.082	106.778	106.458	83.663	106.460	106.147		
4p1/2	74 545	91 163	94.570	74 107	74 127	74 127	80 845	94.259
4p3/2	74.545	81.102	76.574	/4.12/	00.045	76.264		
4d3/2	56 772	55 904	57.699	56 204	55.579	57.389		
4d _{5/2}	50.125	33.890	54.402	30.304		54.092		
4f5/2	21 002	20 251	29.558	21 571	28 022	29.246		
4f7/2	51.995	29.201	28.691	51.571	20.952	28.379		
5s1/2	18.432	24.017	23.884	18.034	23.703	23.578		
5p12	14 715	16 026	19.225	14 222	15 719	18.920		
5p3/2	14./15	10.020	14.881	14.525	15.710	14.582		
5d _{3/2}	0 2004	7 7642	8.0774	7 9226	7 4609	7.7891		
5d _{5/2}	0.2004	1.7045	7.4326	7.6520	7.4030	7.1476		
5f5/2	0.00020	0 40586	0.40238	0 60074	0 18927	0.19330		
5f72	0.90029	0.40300	0.33192	0.00974	0.10927	0.13020		
6s12	2.7933	3.7628	3.7190	2.5934	3.5548	3.5207		
6p1/2	1 7540	1 8460	2.3639	1 5877	1 6857	2.1900		
6p3/2	1.7540	1.0400	1.6538	1.58//	1.0057	1.5112		
6d3/2	0 34550	0 24637	0.26040	0 27223	0 10132	0.20519		
6d _{5/2}	0.54559	0.24037	0.22495	0.27225	0.19152	0.18020		
7s12	0.32680	0.39633	0.39161	0.30625	0.36496	0.36364		
-E total [Ryd]	52655.1329	57509.8406	57734.5203	52655.5714	57509.9204	57734.5844		

(f) Pu

	LDA gro	und con. : 5f6.	* 6d* 7s ²		5f ⁵ 6d ¹ 7s ²	
-E _{nt} [Ryd]	NR	K-H	Dirac	NID	V U	Dime
	(x = 0.00)	(x = 0.00)	(x = 0.00)	NK	к-п	Dirac
1s _{1/2}	7716.1	8978.0	8967.8	7716.5	8978.3	8968.1
2s1/2	1344.0	1691.4	1688.5	1344.4	1691.7	1688.8
2p1/2	1201 6	1202.0	1629.2	1202.0	1202.2	1629.5
2p _{3/2}	1 1501.0	1392.9	1316.1	1302.0	1393.5	1316.4
3s _{1/2}	340.82	429.96	429.04	341.26	430.31	429.38
3p1/2	210.00	247.60	402.12	220.25	249.02	402.45
3p _{3/2}	319.90	347.09	329.56	520.55	346.05	329.89
3d _{3/2}	200 71	270.04	287.32	201 15	270.20	287.65
3d5/2	280.71	219.04	272.78	281.15	219.39	273.11
4s1/2	86.621	110.877	110.535	87.055	111.218	110.868
4p1/2	76.007	94 049	98.347	77 220	84 290	98.680
4p3/2	10.897	04.040	79.204	11.550	04.309	79.536
4d _{1/2}	50 711	50.005	59.916	50 145	60 246	60.249
4d _{5/2}	38./11	58.005	56.422	59.145	38.345	56.754
4fs/2	22 420	20.690	31.019	22.076	21.022	31.353
4f _{7/2}	33.439	30.089	30.091	33.870	51.052	30.426
5s1/2	18.721	24.846	24.707	19.132	25.182	25.035
5p12	14.006	16 422	19.892	15 212	16764	20.218
5p32	14,900	10.433	15.215	15.512	10.704	15.535
5d _{3/2}	0 31 42	7 9547	8.1976	9 6036	9 1716	8.5072
5d _{5/2}	0.2143	1.0347	7.5044	0.0050	0.1710	7.8104
5f _{5/2}	0.69760	0.22212	0.23657	0.00202	0 47224	0.46805
5f7/2	0.08700	0.23215	0.16340	0.99393	0.47254	0.38761
6s12	2.6553	3.6886	3.6514	2.8621	3.9147	3.8664
6p12	1 6210	1 7241	2.2679	1 7022	1 2020	2.4573
6p3/2	1.0210	1.7241	1.5387	1.7933	1.0909	1.6938
6d3/2	0.26085	0 19410	0.19802	0 24547	0.24310	0.25751
6d _{5/2}	0.20983	0.18410	0.17348	0.34347	0.24310	0.22085
7s1/2	0.30884	0.36844	0.36721	0.32988	0.40323	0.39809
-E total [Ryd]	54009.6522	59116.6600	59359.1799	54009.1266	59116.5173	59359.0538

— 96 —

(continued)

4	
1 0 1	Δ
(2)	- AIII
101	

	LDA gro	und con. : 5f ⁷⁻	* 6d* 7s ²	5f ⁶ 6d ¹ 7s ²			
-E _{al} [Ryd]	NR	K-H	Dirac	ND	K U	Direct	
	(x = 0.00)	(x = 0.00)	(x = 0.00)	NK	к-п	Dirac	
1s _{1/2}	7887.8	9216.3	9205.4	7888.3	9216.6	9205.7	
2s1/2	1377.0	1743.4	1740.4	1377.4	1743.7	1740.7	
2p12	1224.0	1420.9	1679.7	1224 5	1420.2	1680.0	
2p _{3/2}	1334.0	1429.8	1349.4	1334.5	1430.2	1349.7	
3s1/2	350.45	444.70	443.73	350.90	445.07	444.06	
3p1/2	220.22	250 47	416.21	220 67	250.04	416.54	
3p3/2	329.22	338.47	339.45	329.07	338.84	339.79	
3d3/2	200 42	297 70	296.49	200.00	200 15	296.83	
3d5/2	209.42	201.19	281.21	209.00	200.15	281.54	
4s12	89.606	115.400	115.047	90.054	115.763	115.381	
4p1/2	70 602	97 207	102.554	00.140	07 (50	102.887	
4p3/2	19.095	81.291	82.198	00.140	87.659	82.531	
4d3/2	61 142	60 459	62.495	61 501	60.920	62.828	
4d5/2	01.143	00.438	58.794	01.591	00.820	59.127	
4f5/2	25 220	22 466	32.832	25 701	22 920	33.167	
4f7/2	33.330	32.400	31.841	33.781	52.850	32.176	
5s12	19.402	26.006	25.871	19.826	26.364	26.201	
5p12	15 492	17 140	20.897	15 002	17 500	21.225	
5p3/2	13.403	17.149	15.861	15.902	17.500	16.184	
5d _{3/2}	8 5000	9 2250	8.6172	8 0028	9 5721	8.9310	
5d _{5/2}	8.3900	0.2330	7.8697	0.9920	0.3721	8.1802	
5f5/2	0 76217	0 27412	0.28793	1 09509	0 53500	0.53067	
5f _{7/2}	0.70317	0.27415	0.20409	1.06508	0.33390	0.43989	
6s1/2	2.7137	3.8224	3.7891	2.9275	4.0651	4.0121	
6p1/2	1 6517	1 7606	2.3515	1 8300	1 0487	2.5492	
6p3/2	1.0517	1.7000	1.5688	1.0500	1.9407	1.7306	
6d3/2	0.26675	0 17727	0.19222	0 34453	0 23012	0.25378	
6d3/2	0.20075	0.17727	0.16800	0.34455	0.23912	0.21612	
7s1/2	0.31134	0.37235	0.37177	0.33284	0.41011	0.40461	
-E total [Ryd]	55383.7372	60754.7455	61016.3420	55383.1261	60754.5420	61016.2397	

(h) Cm

- <i>E _{nl}</i> [Ryd]	5f ⁷ 6d ¹ 7s ²			LDA ground con. : 5f ^{7+x} 6d ^{1-x} 7s ²		
	NR	K-H	Dirac	NR	K-H	Dirac
				(x = 1.00)	(x = 1.00)	(x = 1.00)
1s _{1/2}	8061.9	9459.9	9448.2	8061.4	9459.5	9447.9
2s1/2	1410.8	1797.1	1793.8	1410.3	1796.8	1793.5
2p12	1367.3	1467.6	1731.8	1366.8	1467.3	1731.5
2p _{3/2}			1383.5			1383.2
3s1/2	360.67	460.20	459.13	360.20	459.82	458.78
3p _{1/2}	339.12	369.82	431.01	338.65	369.43	430.66
3p _{3/2}			349.84			349.49
3d _{3/2}	298.72	297.04	306.15	298.25	296.65	305.80
3d _{5/2}			290.10			289.75
4s12	93.081	120.418	120.019	92.619	120.035	119.667
4p1/2	82.978	90.977	107.214	82.516	90.595	106.863
4p _{3/2}			85.578			85.227
4d _{3/2}	64.062	63.322	65.457	63.600	62.940	65.106
4d _{5/2}			61.541			61.190
4f5/2	37.711	34.649	35.019	37.245	34.265	34.666
4f7/2			33.962			33.609
5s1/2	20.515	27.566	27.402	20.077	27.188	27.054
5p12	16.487	18.236	22.264	16.054	17.865	21.918
5p3/2			16.843			16.502
5d3/2	9.3774	8.9678	9.3639	8.9610	8.6113	9.0329
5d _{5/2}			8.5562			8.2287
5f5/2	1.17409	0.59694	0.59843	0.83678	0.31464	0.33724
5f _{7/2}			0.49653			0.24233
6s1/2	2.9901	4.2153	4.1627	2.7692	3.9564	3.9259
6p1/2	1.8646	1.9962	2.6446	1.6803	1.7952	2.4339
6p3/2			1.7678			1.5959
6d3/2	0.34293	0.23462	0.25006	0.26305	0.17061	0.18594
6d _{5/2}			0.21148			0.16243
7s12	0.33573	0.41720	0.41145	0.31366	0.37628	0.37618
-E total [Ryd]	56777.2355	62424.5160	62706.6702	56777.9311	62424.7782	62706.8268

に示された実験値と比較する。NRに比べて,相対論 的効果が入った K-H と Dirac の場合の結果が実験 値にかなり近づいてより良く合うようになっている ことがわかる。特に内殻軌道についての一致は良く, 外殻になるにつれて誤差は大きくなっていく傾向に ある。ただし,5f,6d,7sなど高いところにある準 位については,スペクトル解析等の困難なこともあ って,実験値もそんなに信頼できるものではないこ とに注意するべきである。

次に、Th(6d²7s²)の5f, 6d, 7s 軌道のエネルギー 準位について NR, K-H, Dirac の3種類の計算によ る違いを見てみる。NR では $E_{sf} < E_{6d} < E_{7s}$ とな っているが, K-H ではそれらの間の関係に変化が起 きて $E_{7s} < E_{5f} < E_{6d}$ となっている。これは相対論 的効果における質量速度項により ns 準位 (n = 1~7)が降下し、その結果生ずる核電荷の遮蔽によ り5f, 6d 準位が上昇したためである[6]。中でも、5 f準位の上昇が大きい。7s準位は最下位に移動して いるが,計算において空と仮定した5f準位は,依然 として占有されている6d 準位の下に位置している ので、2)で述べた矛盾は質的には一部改善されたが 全面的に改善された訳ではない。それでも、これら の準位の存在する範囲は、5f準位の大きい上昇を反 映して0.5 Rydから0.1 Rydへと相当小さくなって おり,量的には大幅に改善されたと言える。Diracの 場合は,5fと6d 軌道がスピン軌道相互作用により分 裂しただけで、K-Hの結果から2)を解消するほどの 大きい変化はなく、今回の計算における近似の範囲 内では相対論的効果を考慮しても問題はまだ残って いる。ただし、軌道エネルギー準位の実験との一致 という3)の意味においては、スピン軌道相互作用に よる分裂は重要である。

Th 以外の原子について述べる。軌道エネルギー 準位については、実験値は Th の他は U のものが得 られている。U の計算値と実験値を比較すると、一 致についての傾向は上で述べた Th の場合と同じで ある。他の原子の5f、6d、7sについて、計算から求 められた準位は相対論的効果により上で述べた Th の場合と同じ動きを示す。それらの間の位置関係は、 Ac においては、NR における矛盾は K-H では5f が 上昇して最上位に移動しているので消失している。 ここで計算した原子については、全体的に NR では 7s が最上位、5f が最下位にある傾向にあるが、K-H では6d が最上位、7s が最下位に存在する傾向にあ る。ただし、Np と Cm ではそうはならないで、相対 論的効果の導入により $E_{\rm 5f} < E_{\rm 7s} < E_{\rm 6d}$ となってい る。このように、5f,6d,7sの間の位置関係は原子 により多彩である。IIIにおいて多く見られたスピン 分極を入れたときの準位間の位置関係についての矛 盾は、ここで得られたK-Hの結果における5f準位 の大きな上昇を考慮すると、スピン分極を上乗せす ることによって大半は消えそうな感じがする。

樋口・長谷川[6]によっても既に指摘されている ように、軌道エネルギーに対する相対論的効果は、 一般的には次のように解釈することができる。全て の原子において、s、p 軌道の準位は NR に比べて K -H、Dirac のどちらも低くなっており、内殻側ほど この傾向は大きい。しかし、d、f 軌道は逆に浅くな り、外殻側ほどその傾向が大きい。このことは相対 論的効果をよく表していて、核近傍に比較的大きな 存在確率を持つ s 軌道は、質量速度項によりそのエ ネルギー準位が低下し、軌道半径が小さくなる傾向 がある。そして、この軌道半径の収縮は d、f 軌道に ある電子に対して核電荷を遮蔽するように働くた め、d、f 軌道にある電子のエネルギー準位は逆に上 昇し、これらの軌道半径は外側へ広がるということ を示唆している。

また、Table II から、Th と U のように 0 < x < 1を満たす x で LDA 基底配置が起こるときは5f と 6d 準位は非常に接近した位置にあること、また、5f、6d、7s 軌道準位の位置関係は x の値により変化する ことがわかる。

5. まとめと今後の課題

前論文[1]に引き続きアクチニド原子について相 対論的原子構造計算を行い,前回指摘した問題点に 着目しながら,軌道エネルギー準位,基底配置の型 および励起配置のエネルギー準位などに対する相対 論的効果について調べた。その結果確認されたこと と今後の課題を列挙する。

電子間クーロン相互作用との複合効果として、
s 軌道のエネルギー準位の降下、およびそれによる
外殻側の5f, 6d 軌道のエネルギー準位の上昇が確認
された。

 非相対論に比べて遙かに実験に近い軌道エネル ギー準位が得られた。

3) 冒頭で述べた問題点, 1), 2)については, 質的 に改善されたが, 一部実験事実に合わないものが残 っており全面的に解決された訳ではない。しかし, 不一致のまま残ったものについても, 量的には実験

に合う方向に大幅に改善された。

今後の課題は、相対論的効果に加えてスピン分極[15]および軌道分極[16]の効果を調べ、残された問題点の改善をはかることである。

参考文献

- [1] 成田 章,安達栄輔:秋田高専研究紀要, 32, 119, 1997.この論文を III と引用する
- [2] A.E. Sandström: Encyclopedia of Physics, 30, 78, 1957, ed. Flügge, Springer-Verlag.
- [3] A. Narita and H. Kobayashi:秋田高専研 究紀要, **31**, 114, 1996.
- [4] V.L. Moruzzi, F.F. Janak and A.R. Williams: Calculated Electronic Properties of Metals, Pergamon Press Inc., 1978.
- [5] J.C. Slater: The Calculation of Molecular Orbitals, John Wiley & Sons Inc., 1979.
- [6] 樋口雅彦,長谷川 彰:新潟大学情報処理センター年報,5,3,1994.
- [7] D. Liberman, D.T. Cromer and J.T. Waber: Computer Phys. Commun., 2, 107, 1971.

- [8] M. Springborg: Density Functional Methods in Chemistry and Materials Science, John Wiley & Sons, 1997.
- [9] J.P. Desclaux and A.J. Freeman: Handbook on the Physics and Chemistry of the Actinides, eds. A.J. Freeman and G.H. Lander, Vol. 1, North-Holland, Amsterdam, 1984.
- [10] D.D. Koelling and B.N. Harmon: J. Phys. C, 10, 3107, 1977.
- [11] T.L. Loucks: Augmented Plane Wave Method, W.A. Benjamin Inc., 1967.
- [12] L. Brewer : J. Opt. Soc. Am. 61, 1101, 1971 ; 61, 1666, 1971.
- [13] W.C. Martin: J. Opt. Soc. Am. 61, 1682, 1971.
- [14] L.J. Nugent and K.L.S. Sluis: J. Opt. Soc. Am. 61, 1112, 1971.
- [15] A.H. MacDonald : J. Phys. C, 16, 3869, 1983.
- [16] M. Higuchi and A. Hasegawa: J. Phys. Soc. Jpn. 66, 149, 1997.
- [17] 成田 章, 大石浩司, M. カビール: 秋田高専 研究紀要, **33**, 100, 1998.