構造用圧延鋼材の平面曲げ疲労強度に

およぼす低温 -55℃ の影響

宮 野 泰 治·安 藤 正 昭

Effect of Low Temperature -55°C on Plane Bending Fatigue Strength of Structural Rolled Steel

Taiji MIYANO and Masaaki ANDO

(1996年11月29日受理)

Three point bending fatigue test of structural rolled steel with notch were performed under low temperature of -55° C and room temperature. Fatigue life and fatigue crack growth behavior were discussed under two temperature conditions.

Results obtained are sammarized as follows;

- (1) Under temperature of -55° C, fatigue life N_{f} improved $1.9 \sim 2.4$ times and fatigue crack propagation life from 0.8 mm of fatigue crack to failure increased $2.2 \sim 2.7$ times of those under room temperature.
- (2) From view point of life ratio N/N_f, rate of fatigue crack propagation were mostly same. It is suggested that crack growth behavior is independent of temperature and stress amplitude.
- (3) Crack propagation rate da/dN under temperature of -55° C in range of same stress intensity factor ΔK deteriorated $1/2.5 \sim 1/3$ of those under room temperature.
- (4) Maximum stress intensity factor K_{max} were constant for crack length at second stage end in fatigue process. K_{max} for -55° C was about 1.25 times of K_{max} for room temperature.

1.緒 言

寒冷地で使用される実機の鋼材部品や要素に起こ る、予期せぬ破壊の問題を考察するための基礎的デ ータを集積することを目的として、著者らは、これ まで、低温環境下にある炭素鋼の強度特性に関する 一連の実験を行い、その結果を報告してきた^{1)~8)}。

本報告は、引き続いて、一般構造用圧延鋼材に対 して、三点曲げの疲労試験を -55℃ 液体窒素雰囲 気中で行い、その疲労寿命やき裂進展挙動等を室温 下の場合に対比して、この材料の疲労挙動におよぼ す低温の影響を検討したものである。以下に実験の 範囲内で得られた結果について報告する。

2. 試験片および実験方法

供試材は、市販の厚さ22 mm,幅75 mmの一般構

造用圧延鋼材で,化学成分は表1に示すとおりであ る。これを図1に示す形状寸法の三点曲げ疲労試験 片に機械加工した後,920°C,1時間の真空焼きなま しを施してから実験に供した。実験に使用したもの の大部分は,試験片中央部の片側に,幅2 mm,深 さ5 mmのU形ノッチを付したものであるが,寿 命曲線の検討には半径5 mmの円弧ノッチを付し た試験片も一部使用している。

平面曲げ疲労試験は、電気油圧サーボ式疲労試験 機(島津サーボパルサ; EHF-UD-40L 形)を使用 し、繰返し速度を3~5 Hz,繰返し最小応力を約 18.8 MPaとする部分片振り(応力比R=

表1 化学成分(%)

С	Si	Mn	P	S	Cu
0.28	0.13	0.57	0.010	0.018	0.19

平成9年2月

(b) 切欠き形状

(a) 試験片の形状寸法図1 試験片

0.05~0.10)の荷重制御で行った。

低温での疲労試験は、試験片とチャック部を覆う 恒温槽中に液体窒素を噴霧させて、試験片表面温度 を -55±2℃に保持して行った。

切欠き底に発生し進展する疲労き裂の計測は, 試 験片の両側面に貼付したクラックゲージ(共和製; KV-5C)によって行った。本クラックゲージでは, 0.1 mmのピッチで4.6 mmのき裂長さを,試験を中 断せずに連続して測定することができる。

疲労破断後の破面の巨視的様相の観察には,万能 投影機を用いた。

3. 実験結果および考察

3・1 疲労寿命について

表2に疲労試験結果を示す。ここで、応力は切欠 き部断面の公称曲げ応力であり、N_fは破断繰返し数 (破断寿命)、N_{0.8}は切欠き底からき裂が0.8 mm 進 展したと考えられる推定繰返し数 (0.8 mmの前後 の2点で計測されたき裂長さの間の、き裂進展速度 da/dNから推定した値)である。N_{0.8}/N_fの値は、 U形ノッチでは、室温でも -55° Cでも、約 0.60~0.80の範囲にあり、円弧ノッチでは 0.93~0.98の範囲にあった。

図 2 に、S-N_t 曲線を示す。図に示す回帰曲線によって、それぞれの破断寿命を比較すると、U 形ノッチでの -55° C では、室温に対して、1.9倍 (94.5 MPa) ~2.4倍 (160 MPa) 程度の寿命の上昇が観られた。また、室温での、円弧ノッチの疲労寿命は U 形ノッチの寿命の約9.2倍 (132 MPa) ~10倍 (160 MPa) であった。

図3に、き裂0.8 mmから破断までの寿命 (N_{r} - $N_{0.8}$)の、S-(N_{r} - $N_{0.8}$)曲線を示す。室温では、U形 ノッチも円弧ノッチも、同じ寿命曲線上にばらつく ような傾向が認められ、(N_{r} - $N_{0.8}$)には切欠き形状の 影響があらわれていない.この結果は、図2にみた 円弧ノッチとU形ノッチの寿命差は、疲労過程第1 段階でのき裂発生と初期進展の寿命の長短に基づく ものであることを示唆するものである。

また、図3より、U形ノッチにおいて、低温 -55° C の室温に対する ($N_{f}-N_{0.8}$)の寿命上昇割合は、回帰 曲線で対比すれば、およそ2.2倍 (94.5 MPa) \sim 2.7

Notch detai	σmax (MPa)	σmin (MPa)	σa (MPa)	Nf	No.8	Mf-No.8	Temp.
υ	338.7	19.2	159.7	32796	23271	9525	R.T
	282.4	18.0	132.2	70031	46864	23167	
	244.6	17.8	113.4	136563	109648	26915	
	207.0	18.0	94.5	334318	218548	106443	
	179.0	19.2	79.9	607256	481332	125924	
	338.7	17.8	160.5	64725	46706	18019	- 5 5°C
	338.7	18.8	160.0	63332	40076	23256	
	282.2	18.2	132.0	202200	123445	78755	
	207.0	18.0	94.5	556806	420499	136307	
円弧	414.0	17.5	198.3	91040	85085	5956	R.T
	338.7	18.8	160.0	212550	203090	9460	
	282.4	18.0	132.2	804330	788972	15358	

表 2 疲労試験結果

秋田高専研究紀要第32号

倍(160 MPa)であった。

以上のことより,疲労寿命は,疲労過程の第1段 階では,応力,温度と切欠き形状に大きく依存する

が,第2段階のき裂進展過程では,切欠き形状には 関係せず,応力と温度のみに依存していると考察さ れた。

3. · 2 き裂進展挙動

前節で考察したように,疲労の第2段階のき裂進 展過程では,切欠き形状は関係しないと推察される ので,き裂進展挙動の検討は,U形ノッチ試験片を 用いて行った。

試験片切欠き部を挟む両側面に貼付した,2枚の クラックゲージで観測される表面のき裂長さは,そ れぞれで若干異なる。また,これらは機械学会基準 の定義によるき裂長さとは少し異なるものである が,定性的なき裂進展挙動の検討には適用できるも のと考えられるので,観測された長いほうの表面き 裂で,巨視き裂の進展挙動を検討した⁴⁾。

き裂進展曲線の一例として、図4に、 $\sigma_a = 132$ MPa付近の場合を示す。図の(a)にみるように、 -55°Cでは、室温の場合よりも巨視き裂の発生は2 倍以上遅く、以後の進展寿命も極めて長くなってい る。図4の(b)は疲労過程を寿命比N/N_fで表わした ものである。図において、-55°Cでは、室温より、少 し早めの寿命比で巨視き裂が発生し、ゆっくりと進 展するような傾向も認められるが、両者に大差はな く、ほぼ同じような寿命比で、き裂が進展している とも考察できる。以上のような傾向は他の応力 σ_a に おいても大略同様であった。

図5に、各応力、各温度の場合の寿命比 N/N_fに 対するき裂進展曲線をまとめて示した。図より、寿 命比という観点においては、室温と -55°C、および、 応力の大小の影響には、規則性は認められず、寿命 N_fの60~80%に0.8 mm 程度のき裂がばらつき、そ の後の疲労被害は大略同じような寿命割合で進行し

$$K_{\max} = \frac{3SP_{\max}}{2W^2B} \cdot \sqrt{\pi a} \cdot F_i(\xi) \tag{1}$$

$$K_{\min} = \frac{3SP_{\min}}{2W^2B} \cdot \sqrt{\pi a} \cdot F_i(\xi)$$
(2)

$$\Delta K = K_{\rm max} - K_{\rm min} \tag{3}$$

$$zz_{i}, \xi = a/W$$
 c

 $F_1(\xi) = 1.090 - 1.735\xi + 8.20\xi^2 - 14.18\xi^3 + 14.57\xi^4$

ている傾向がみられる。

-

図6は、図4(a)のように表した各場合のき裂進展 曲線からの、き裂進展速度 da/dN と応力拡大係数 範囲 Δ K の関係をまとめて表わしたものである。こ こで、da/dN は増分多項式法⁹⁾によって求め、 Δ K は 図7に示す各式¹⁰⁾で計算した。なお、a は図7に示す ように切欠き底からのき裂長さ1に切欠きの深さ5 mm を加えた値である。

図 6 から、 $da/dN \ge \Delta K$ の関係は、ばらつきはあるが、室温と -55° Cの各々で、次の式(4)および式(5)で表わされるとみなされた。

$$\frac{da}{dN} = 2.03 \times 10^{-9} \times (\Delta K)^{3.519}$$
 (室温) ……(4)

 $\frac{da}{dN} = 1.68 \times 10^{-9} \times (\Delta K)^{3.274} \quad (-55^{\circ}\text{C}) \quad \cdots (5)$

式(4)と式(5)から推察すると、同一 ΔK のもとで は、 -55° Cでのda/dNは、室温のda/dNの約1/2.5 ~1/3 ($\Delta K = 20 \sim 50$ MPa \sqrt{m})程度に低下してい る。このことは、第2段階でのき裂進展寿命が 2.5~3倍程度長くなることを意味するもので、3・ 1節で述べたき裂0.8 mm からの寿命(N_{f} - $N_{0.8}$)の 傾向に対応している結果になっている。

3・3 破面の巨視的様相について

破面の巨視的様相の一例を図8に示す。図にみる ように、疲労過程の第2段階き裂と最終破壊、およ び、試験後の液体窒素で強制破断した破面の、各領 域が、巨視的に比較的明瞭に判別できる。図にみら れる塑性変形の様相は最終破壊領域の過程でおきた ものである。このような様相は他の場合でも同様で あり、その模式図を図9に示す。図示の第2段階き

秋田高専研究紀要第32号

裂の長さ l に切欠き深さを加えた a₁ は,前述の図 5 のき裂進展曲線にみるように,寿命比 N/N_f の値が 1に極めて近い繰返し数の N に対応しているもの である。そこで,この a₁ を巨視的に計測し,その様 相を検討した。

図10に、 $a_1 \ge N_f$ の関係、および、その a_1 に対して、図7の式(1)で計算した最大応力拡大係数 K_{max} $\ge N_f$ の関係を示す。

寿命 N_f の増加に伴い, a_i も増大し, 片対数グラフ で直線的関係となり, $N_f \ge a_i$ の間には明瞭な相関 が認められる。また, 温度条件の影響がわずかに認 められ, 同じ N_f では -55° C のほうの a_i が少し大 きい.

また、 K_{max} についてみれば、ばらつきが大きくデ ータ数も少ないが、それぞれの温度のもとでは、 N_f の大小にあまり依存せず、大略一定値になると思わ れるような傾向が認められる。そして、その K_{max} は、 -55° Cでは室温のときの、およそ1.25倍くらい 大きいものとなっていた。

4.結 言

構造用圧延鋼材の切欠試験片を用いた三点曲げ曲 げ疲労試験を,室温と -55°C 液体窒素雰囲気中で行 い,両者の疲労寿命とき裂進展挙動を対比して,つ ぎのような結果が得られた。

- 5 -

(1) 室温下で、円弧切欠き試験片の破断寿命 N_f は、U形ノッチの N_fの約9.2~10倍であったが、こ れは疲労過程の第1段階終了までの寿命の長短に基 づくもので、第2段階以後のき裂進展寿命では両者 に差異はないものと推察された。

(2) U形ノッチにおいて、-55℃でのNr は室温でのNr の1.9~2.4倍に上昇した。また、疲労き裂
0.8 mmから破断までの寿命(Nr-No.8)では、-55℃の場合は室温の場合の2.2~2.7倍に上昇していた。

(3) -55° C では $N_{0.8}$ も N_t も室温より上昇する が、き裂進展挙動を寿命比 N/N_t で検討すれば、温 度や応力振幅に基づく影響に明瞭な規則性は認めら れず、 N_t の60~80% CO.8 mm 程度のき裂となり、 大略同じような寿命割合で、き裂が進行していた。

(4) き裂進展速度 da/dN と応力拡大係数範囲 ΔK の関係を, $da/dN = C \cdot (\Delta K)^m$ の関係で考察 すると、同一 ΔK のもとでの da/dN は、 $-55^{\circ}C$ では 室温の約1/2.5~1/3程度に低下していた。

(5) 破面に観察される,疲労過程の第2段階終了 までの巨視的き裂長さ a_i と,破断寿命 N_f との間に は明瞭な相関が認められ、また、温度条件の影響も 認められた。 a_i での最大応力拡大係数 K_{max} は、それ ぞれの温度で、ほぼ一定値になると思われるような 傾向がみられ、 -55° Cでは室温のおよそ1.25倍くら いとなっていた。

参考文献

1) 斎藤, 宮野, 秋田高専紀要, 18,1 (1983)

- 2) 斎藤, 宮野, ほか2名, 秋田高専紀要, 19, 1 (1984)
- 3) 斎藤, 宮野, 秋田高専紀要, 20,1 (1985)
- 4) 宮野, 安藤, ほか2名, 秋田高専紀要, 25, 1 (1990)
- 5) 宮野, 安藤, 杉沢, 秋田高専紀要, 26,1 (1991)
- 6) 宮野, 安藤, 秋田高専紀要, 28,1 (1993)
- 7) 宮野,安藤,ほか2名,秋田高専紀要,29,1 (1994)
- 8) 宮野, 安藤, 大山, 秋田高専紀要, 30, 34 (1994)
- 9) 国尾, ほか3名, 破壊力学実験法, 朝倉書店, 164 (1984)
- 10) 国尾, ほか3名, 破壊力学実験法, 朝倉書店, 241 (1984)