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Spin Polarized Atomic Structure Calculations for 3d-Transition Atoms
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The spin polarized atomic structure calculations are numerically performed for 3d-
transition atoms with the configuration consistent with the experiments by uses of the
exchange potentials due to Slater and Kohn-Sham and the exchange-correlation ones due to
Barth-Hedin and Gunnarsson-Lundqvist. In these calculations, the energy levels, the potentials
and the surface charge densities are computed in the self-consistent way, and compared for the
various type exchange potentials. The followings are found. 1) The energy levels are very
sensitive to the potentials and also the effects of exchange-correlation energies are large. 2)
The spin polarization makes the total energy lower, and therefore this supports the strong
magnetism due to the crystallization of the atom. 3) The frozen core approximation may be
good for the 1s to 3p electrons when these atoms make the solids, but the spin polarized 3d to
4s electrons extend and will become to band electrons.

1. Introduction

It is very useful to grasp the electronic
energy band structures for understanding the
physical properties of the solids. We are inter-
ested in calculating the band structures.
Although there are some calculating methods for
them, we adopt the APW method since it gives
the better agreement with the experiments (1, 2].
It is very convenient to know the physical prop-
erties of atoms constituting the solid, before we
proceed to the band structure calculations. By
knowing the properties such as the energy levels
and the wave functions, we shall have a helpful
direction for understanding the properties of the
solids and for calculating their band structures.

For this reason, we here concentrate on the
atomic structure calculations [4, 5, 13]. The
results will be used for the band structure calcu-
lations, which will be carried out in another
papers. The 3d-transition atoms from Sc to Cu
are chosen for the purpose because they show
strong magnetic properties. Accordingly, a pur-
pose of this paper is to do the self-consistent
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atomic structure calculations for the 3d-
transition atoms. In the calculations, the spin
polarizations are taken into account and the
effects of the various type exchange and
exchange-correlation potentials due to Slater,
Kohn-Sham, Barth-Hedin and Gunnarsson-
Lundqvist on the energy levels and the wave
functions are investigated and compared [4-6, 9,
10].

2. Theory
2.1 Local density approximation
We here first describe the total energy. The

total energy of the electron system in an atom is
given by [8]

B = [ dr 2 w217 %i(r)
4 dro (r) Ve(r)

+ [ an (M ewlor (1), p (), @

where
f= —172—¥, @)
Vetr) = [ ar, 3)
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pa(r) = 2 | @i (r) |2 4

p(r) =p:i(r)+p.(r), ()
Z is the atomic number, V.(r) is the Coulomb
energy, p.(r) is the charge density with spin o,
and ex(p: (r), p.(r)) is the spin polarized
exchange-correlation energy per one electron and
its form will be given later. Below, we use the
abbreviated notations p and p, (=1, |)
instead of p(r) and p.(r).
approximation that the charge density p. is only
a function of » and does not depend on the
angular coordinates. Then, V.(») becomes to the
function of only . The one-electron Schrodinger
equation is given by

Here we use the

(=P*+ V, (7)) Wi (r) = Ex¥i(7), 6)
where
Vo(r) = =224 Vo) + Vi (). ™

Equation (6) is derived from the variation of
E,oiei— Ei. N with respect to % (r), in which N is
the total number of electrons given by integrating
p and E; is the Lagrange multiplier [5] and the
meaning is an energy eigenvalue. The exchange-
correlation potential is given by

VR (r) = %[pem(ph p)]. ®

Thus, we regard the Coulomb and the exchange-
correlation energies as the functionals of p., and
the Schrodinger equation is derived from varia-
tion occurred through the virtual small change of
wave function. In the numerical calculations, we
solve the equation. There, we use the locally
varying charge density. This method is known as
the local density approximation [7, 14]. Of
course, we use this approximation in this paper.
Using (1), (6) and (7) we get the total energy as
follows [5]

Eiotar = 2 g ni::Eio'_%f drp (l‘) Vc(r)
—fdr;pc(r) Vg (r)

+/drp(r)€xc(P"pi)- ©

The wave function ¥ (r) can be written in the
form ¥, (r) = Rs(7) Yin (8, ¢), in which R, (7)

Tk 84 2 A

is the radial part and the principal quantum
number is omitted, and Y, (6, ¢) is the spherical
harmonics. The Schrédinger equation for R, (7)
is given by

_1 d|( .dR.
r2dr (72 dr

) (V( )+l(l+1))Rla—ERla.
(10)

2.2  Exchange-correlation energy

We adopt four kinds of exchange and
exchange-correlation potentials for ex.(p:, p1),
that is, Slater and Kohn-Sham exchange poten-
tials, and Barth-Hedin and Gunnarsson-
Lundqvist exchange-correlation potentials [5, 6,
9,10]. Below, we use the abbreviated notations S
and K-S instead of Slater and Kohn-Sham, and
similarly use B-H and G-L instead of Barth-
Hedin and Gunnarsson-Lundgvist.

First, we should refer to S and K-S exchange
potentials since they have the similar form. S
and K-S exchange potentials are well-known and
given by

VR (r) = VE(r) = —Ga( p.,(n) (11)

where @ =1 for S and a = 2/3 for K-S. From
eqs. (8) and (11), ex(p:, p.) can be written as
follows

ex(pr, p1) = [I+¢) 4+ (1—¢)*], (12)

87z'g7’
where g = (4/97)"® = 0.52106176, 75 is defined by
4zrs*/3 =1/p, and & = (p1—p.)/p. For & =0,
the paramagnetic state is realized and e, =
&P = —9a/(4dngrs). For & =1, the fer-
romagnetic state is realized and then e, =

e = —9a-2*%/(8ngr;) = 2. Using ¥ and
&9, ex(p+, p.) becomes to

ex(p, pi) = P+ (e —eP)f(¢), (13)
with

f(g) 2(d 1)[(1+§)413+(1 §' 4/3 2] (14)

where a = 2'3, and &¥ = (e¥—&¥)/(a—1) is
used.
Next we consider B-H exchange-correlation
energy. It is given by
exc(pr, p1) = €R(rs) +5(r) f(¢), (15)
n(rs) = eR(r) —eR(7s), (16)
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e = e@+e (i =pf), an
where & (75) is the K-S exchange energy and the
value of & is 2/3, and 7 = p and i = f mean the
paramagnetic and the ferromagnetic states,

respectively. Here, ¥ (7;) is the correlation
energy among many electrons, and can be written
as

P (7)) = —¢:G (%), (18)

where x; = 7s/7;, ¢, = 0.045, 7, = 21 and ¢, = ¢/
2 = 0.0225, 7, = 247, = 2ar, are chosen, and
G(x) is

1

G(x) = (14+x%) In (1-1-%) —x2+%—?. (19)

Note that the correlation energy e.(p:, p:) is also
given by the same form as &x(p:, p,) denoted by
eq. (13). For the paramagnetic state, this reduces
to Hedin-Lundqvist exchange-correlation energy
[11]. After a long calculation, we get the follow-
ing B-H exchange potential

Vid (rs) = Vo(rs) + Vi(rs) [(1+05) 2 —1]

+ V2 (%) f (¢), (20)
Vo(ry) = —zzrs—cp In (1+xlp), (21)
Vilr) = —2et iy lat () — oG ),
(22)
_ 1 1

Vo(7s) = ¢pln (1+x_p) —¢rln (1+x_,)
~ 316G ) — G )], 23)
where ¢ = 1 for up spin and ¢ = —1 for down

spin [10].

The G-L exchange-correlation potential is
the same form as the B-H exchange-correlation
potential only with the different constants given
by ¢, = 0.0666, 7, = 11.4 and ¢, = 0.0406, and 7», =
15.9 [9].

3. Calculation method

The Schriédinger equation given by (10) must
be solved numerically. For the numerical calcu-
lations, the well-known Numerov method is used.
It is convenient to introduce the logarithmic
variable given by x = In 7 in the real calculations
because the equation must be solved with high

precision for very small » in order to guarantee
sufficient accuracy for the whole # of the numeri-
cal solutions [5]. Putting Y (x) = #Y2R(7), we
get the next equation instead of (10) [15]

Y"(x) =y Y (x), (24)

y(@) = [V () —E1+ (1+5). (25)

The asymptotic behaviors of the solution are
Y (x) oc e™2* for small x and Y (x) oc exp (x/
2—y/=Ee*) for large x. The equation is solved for
That is, for an
arbitrary given negative energy E, one is started
at the small x5 taken to be xs = —In Z—10 using
Y (xs) = e“*¥»= and another is at the large x:
equal to In7;, where 7», = 25/(—FE)"? using
Y (%) = exp (x/2—25). When the logarithmic
derivatives of these two solutions at a appropri-
ate position x, connect continuously, the E is the
energy eigenvalue for the potential. The %, is the
larger one of two x, at which ¥ (x) changes the
sign. For x < x, the radial wave function Y (x)
oscillates because of presence of negative region
of y(x), and for x > x, they show the exponential
damping with a constant sign because of y (x) >
0. The x, is the inflection point. For the continu-
ous connection, it is convenient to use the logar-
ithmic derivative since the normalizations of
wave functions are not needed. For the numeri-
cal calculations of the derivative, the following
formula is used.

a potential in two manners.

O = o6 (1= 116 (130 7,
H1(Y- Y0, (26)

where % is the mesh interval and 2 = 0.03, ¥ =
Y(x), Yin = Y (xtmh) and y.: = y(x+h).
The acceptable energy eigenvalues and the
wave functions are determined from the iteration
in the self-consistent method. That is, if they are
once obtained for the potential V;(7) in i-th
iteration, the new potential V., (7) for the next
step iteration is constructed from a mixing
between the old potential V;(7) and the output
potential V() calculated using the wave func-
tions obtained from V(7). V., () is given by
Vi (7) = aVi(r) + (1—a) VO (7). 27
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The mixing parameter is taken to be a = 0.7.
The convergence of iteration is judged by the
condition |7[ V() — V®(r)]| < & with e =5X
10—,
Hydrogen-like potential —2Z/» is used. For
these parameters, it takes about 34 iteration
times for convergence.

As the initial potential in iteration, the

4. Numerically calculated results and
discussions

4.1 Ewnergy Eigenvalues

The accuracies of the numerical calculations
are first described. For this check, we used the
results due to Moruzzi, Janak and Williams [8].
They calculated the total energy using the B-H
exchange correlation energy, and, for example,
for Fe atom, they obtained the lowest total
energy FEioiar = —2522.369 Ryd for the
configuration 3d;%3d,!“4s;4s,%6. We obtained
Eioias = —2522.367 Ryd for the same
configuration. The agreement is very much
excellent. For other atoms from Sc to Cu, we
also did the check. The agreement were very
much excellent for all atoms. Therefore, the

Table I The energy levels of 3d-transition atoms for the par-
amagnetic states are compared for various exchange
(-correlation) potentials. S and K-S mean Slater and Kohn-Sham
exchange potentials, and B-H and G-L, respectively, Barth-Hedin
and Gunnarsson-Lundqvist exchange-correlation potentials.

-Exw -Ex -En -Ex -Ey, -Ewu -Eus -Ewa

Sc | K-S 32020 34292 28.356 3.8823 23736 0.17989 0.25127 1514.002
8di4s? | B-H | 32036 34410 28477 39804 24703 026747 031977 1517.310
21 G-L | 32040 34437 28505 39971 24863 0.27955 032430 1518.107

S 32624 35914 30.071 43731 2.8261 047790 0.37416 1549.546

Ti K-S 35439 38797 32448 4.4214 27526 025487 0.27037 1690.997
3d%4s? | B-H | 354.54 38914 32.568 4.5198 238500 0.34526 034113 1694.499
22 | G-L | 35458 38939 32595 4.5363 28659 0.35813 034621 1695349
S 360.72 40465 34.224 4.9239 32192 0.57455 039906 1729.379

v K-S 390.28 43.512 36.749 4.9580 3.1263 0.32143 0.28620 1879.593
3d34s? | B-H | 39044 43.629 36.868 5.0577 3.2251 0.41440 0.35890 1883.294
23 | G-L | 39048 43.654 36.894 5.0744 32414 042806 0.36450 1884.198

S 396.90 45.233 38.591 5.4793 3.6132 0.66389 0.42099 1920.951

Cr | K-S 427.62 48.128 40950 52171 3.2278 0.16081 0.24139 2080.064
3ds4s! | B-H | 427.75 48227 41.051 53029 33134 024214 030798 2083.986
24 | G-L | 42779 48245 41.072 53149 33252 025186 031173 2084.954
S 43438 49.754 42711 5.6437 3.6241 0.41480 0.33787 2124.727

Mn | K-S 467.23 53.615 46.011 6.0544 3.8848 044061 031342 2292.706
3ds4s2 | B-H | 467.38 53.732 46.130 6.1570 3.9868 0.53795 0.38927 2296.816
25 | G-L | 46742 53757 46.157 6.1746 4.0041 0.55307 039579 2297.835
S 47442 55448 47.990 6.6206 4.4182 0.82860 0.45978 2340.425

Fe | K-S 50829 59.011 50981 6.6208 4.2753 049559 032577 2517.774
3de4s? | B-H | 50844 59.129 51.102 6.7249 4.3789 0.59482 0.40296 2522.093
26 | G-L | 50848 59.153 51.128 67430 4.3966 0.61060 0.40988 2523.171
S 515.76 60.902 53.030 7.2108 4.8330 0.90600 0.47755 2568.881

Co | K-S 551.07 64.641 56.182 7.2016 4.6752 0.54834 0.33757 2755.547
3d74s2 | B-H | 55122 64.758 56302 73072 4.7803 0.64932 0.41599 2760.078
27 | G-L | 55126 64.783 56328 73257 4.7986 0.66572 0.42329 2761217

S 558.83 66.588 58.299 7.8159 5.2575 0.98090 0.49458 2810.182

Ni [ K-S 595.58 70.505 61.613 7.7979 5.0854 0.59924 034896 3006.297
3dsds? | B-H | 59573 70.623 61.734 7.9049 5.1919 0.70184 0.42852 3011.044
28 | G-L | 59577 70648 61.760 7.9239 5.2107 0.71883 0.43618 3012246
S 603.62 72.510 63.798 8.4366 56924 1.05367 0.51101 3064.603

Cu | K-S 64142 76.177 66.853 8.0215 5.1254 031548 027711 3270.454
3dioget| B-H | 641.57 76.283 66962 8.1193 5.2230 0.40989 035125 3275.441
29 | GL 641.60 76303 66984 8.1349 52385 0.42379 035722 3276.714
S 649.61 78.089 68955 8.5668 5.6413 0.67746 0.40028 3332.849

Fr 84F 2 A

accuracies of our calculations are very much
good.

In Table I, the energy levels and the total
energy are tabulated for the case of no inclusion
of spin polarization, in which the electron num-
bers with the up and down spins are equal for
each state. This case is referred to as the par-
amagnetic case below. The same configurations
as those determined from the experiments are
used in the calculations. Furthermore, the vari-
ous exchange and the exchange-correlation
effects are compared. We can immediately real-
ize from Table I and Fig. 1 that the depth of each
energy level depends on the exchange
(-correlation) energies and is deepest for S
exchange potential and most shallow for K-S one.
The order of depth is arranged according to S,
G-L, B-H and K-S. The results due to B-H and
G-L are very close. For Cr and Cu, the energy
levels of 3d and 4s states are very shallow
compared to the neighboring atoms. This is due
to the configuration. When the configurations
3d*4s? for Cr and 3d%s? for Cu are used, these
strange behaviors disappear. Furthermore, for
atoms except for Sc, Ti and Cr, the energy levels
for 3d state are deeper than 4s state. For Sc and

ENERGY(Ryd)

e S
08} o K-S . )
s B-H e \ ;oA
1.0 | o G-L ®. .
A J
_1'2 f 1 1 1 1 ! 1
Sc Ti V Cr Mn Fe Co Ni Cu

Fig. 1 The energy levels for the paramagnetic 3d and 4s states are
plotted as a function of 3d-transition atom series, and compared
for the various exchange (-correlation) potentials. Data in Table
I are used.
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Cr, the relation is reversed although it is different
for S exchange potential. For Ti, both levels are
almost same.

Next let us consider the energy levels and the
total energy for the case including the spin polari-
zation. Below, this case is referred to as the
ferromagnetic case. These are shown in Table II
and Fig. 2. There, the same atomic
configurations as the paramagnetic case are used.
However, the electron numbers in 3d and 4s
states depend on the spin, although the equal
numbers are assumed for the states from 1s to 3p.
The numbers are distributed so as to have the
maximum total spin for 3d and 4s states within
the above given configuration, which is one of the
Hund rule. For example, the configuration of Cr
is 3d:°3d,%s;'4s,°. In Table II, the exchange
(-correlation) potential effects are compared. In
Fig. 2(a), the energy levels for 3d and 4s states are
indicated only for the B-H exchange-correlation
energy. It can be realized for all atoms by
comparing Tables I and II that the total energies
get lower by taking into account the spin polari-
zation. This fact means that the 3d transition
atoms will have a magnetic character, and sup-
port that these atoms have a strong magnetic
properties by the crystallization. It follows from
comparison between Fig. 1 and Fig. 2(a) that the
splittings due to the spin occur for both 3d and 4s
states, and, as naturally predicted, the spin up
levels become deeper than the paramagnetic case
and the spin down levels become more shallow.
The magnitude of the splittings mainly depend on
the difference between the electron numbers of
the spin up and down in 3d states. Therefore,
they are large for atoms near Cr. For this reason,
for Cr, the spin down 3d state is pushed upward
and this is no more a bound state. However, this
is not contradict with the configuration of Cr
because its state is empty. The energy levels
shown in Fig. 2(a) are also consistent with the
atomic configurations assumed for all atoms.
That is, for atoms having the empty state, the
states are most shallow.

Fig. 2(b) indicates the result obtained by
adding the effect of Latter correction on Fig. 2(a).

Table II The energy levels of 3d-transition atoms with the spin
polarizations are compared for various exchange (-correlation)
potentials. The meanings of S, K-S, B-H and G-L are the same as
in Table L.

-Ew -Exn -Eyp, -Esx -Ep -Exa -Eu -Ewa

K-S 320.20 34295 28357 3.9091 24009 0.20633 0.26579 1514.017

Sc | 132020 34.276 28342 3.8440 2.3351 0.14494 0.23424 1514.017
B-H| 32035 34413 28478 4.0033 24933 0.28862 033001 1517.323

3dy13dy° 32035 34396 28464 3.9475 24376 0.23898 0.30727 1517323
4s1'4sy! |G-L 32039 34440 28.506 4.0199 2.5092 0.30051 033414 1518.120

32039 34423 28492 3.9644 24539 0.25140 031225 1518.120
32624 35926 30.079 4.4260 2.8789 0.52745 039367 1549.573
32624 35.889 30.050 4.3083 2.7617 0.41865 0.35279 1549.573
-S 35437 38801 32447 4.4761 2.8076 030692 029462 1691.062

Ti 35437 38.753 32410 43313 2.6632 0.17614 0.24067 1691.062
B-H 354.52 38917 32.566 4.5657 2.8957 038698 0.35829 1694.553

21 S

| —ofem —ofem

396.86 45.105 38482 5.2408 3.3791 045458 036746 1921.21)
K-S 427.51 48.094 40900 S5.2940 33052 0.24003 0.30215 2080.547
Cr 427.51 47954 40.793 4.9360 2.9476 0.02000  2080.547
B-H 427.66 48.195 41.005 53689 33792 030709 0.35213 2084.385

3d123dy0 1 135452 38.873 32.532 4.4415 2.7730 0.27930 0.31827 1694.553
4st'dsy! JG-L| 1 | 354.57 38943 32.594 4.5819 29113 039942 036281 1695.402
1 ] 354.57 38.8399 32.559 4.4587 2.7897 0.29289 0.32395 1695.402
22 S | 1 ] 36069 40485 34234 50268 33213 0.66986 043260 1729.491
4 ] 360.69 40395 34.165 4.7780 3.0754 044474 0.36041 1729.491
K-S| t ]390.25 43.517 36.743 5.0397 3.2079 039816 031830 1879.747
v 1 ]390.25 43431 36.678 4.8078 29783 0.19266 0.24609 1879.747
B-H| t ]39040 43.631 36861 5.1258 3.2926 047621 038171 1883.423
3dy33dy° ! 139040 43.552 36.801 4.9259 3.0962 030441 0.32698 1883.423
4spMsyt G-L| t ] 39044 43.657 36.888 5.1420 3.3083 0.48921 038663 1884.326
4 139044 43.578 36.828 4.9439 3.1138 031920 0.33321 1884.326
23 S | 1t | 39685 45259 38.598 5.6289 3.7611 0.80230 046596 1921.211

)

1

i

t

3d153d° 4 142766 48.065 40.906 5.0557 3.0688 0.13393 2084.385
dst'dse [G-L| t | 427.70 48214 41.026 53803 3.3904 031596 035418 2085347
4§ 427.69 48.084 40926 5.0694 3.0825 0.14725 2085.347

24 S |t |43424 49.734 42661 58057 3.7853 0.57351 044083 2125.524

4 143424 49486 42474 52039 3.1876 0.01842 2125.524

K-S] t ] 467.15 53.617 45992 6.1859 4.0155 0.56385 0.35856 2293.166

Mn I ] 467.15 53435 45.854 5.7662 3.6024 0.19677 0.25603 2293.166
B-H] t ] 46731 53.729 46.109 62668 4.0953 063850 0.42164 2297210

3dy63d0 1 ]467.30 $3.561 45.981 5.9006 3.7367 0.32425 0.34152 2297.210
481’48y |G-L 467.35 53.754 46.135 62834 4.1115 065250 042729 2298.225
467.35 53.587 46.008 59206 3.7563 0.34130 0.34859 2298.225

25 S 47431 55480 47986 68549 4.6496 1.0471S 0.52372 2341.188
47431 55.167 47.750 6.1721 3.9792 0.43902 0.38070 2341.188

K-S 50824 59.042 50994 6.7510 4.4037 0.61383 035947 2518.078

Fe 50824 58879 50.870 6.4030 4.0621 0.30998 0.28759 2518.078
B-H| 50840 59.154 51.110 6.8357 4.4877 0.69387 0.42848 2522.356

3d153dy 50839 59.003 50.995 6.5311 4.1898 0.43151 037080 2522356
4sp'4sy! [G-L 50844 59.178 51136 6.8526 4.5043 0.70850 0.43488 2523.43]
50844 59.029 51.022 6.5509 4.2094 0.44872 037799 2523.431

26 S 51570 60968 53.063 7.4298 5.0484 1.10706 0.52459 2569.381

515.70 60.690 52.854 6.8689 4.4985 0.60718 0.42441 2569.381

K-S 551.05 64.682 56207 7.3132 4.7850 0.64839 036119 2755.722

Co 551.04 64.548 56.105 7.0455 4.5225 041398 031239 2735.722
-H|

551.20 64.795 56324 7.4037 4.8749 0.73485 0.43461 2760.231
551.20 64.671 56.230 7.1683 4.6447 0.53085 0.39469 2760.231
551.24 64819 56350 74212 4.8921 0.75030 0.44163 2761.369
551.24 64.696 56.256 7.1882 4.6643 0.54829 0.40213 2761.369
558.80 66.664 58347 79988 54371 1.14775 0.52737 2810.470
558.80 66438 58.177 7.5699 5.0168 0.76390 0.45953 2810.470
IK-S 595.57 70.542 61.639 7.8799 5.1659 0.67229 036376 3006377

3d1°3d4?
4spMsy! |G-L

27 S

Ni 595.57 70446 61.566 7.6979 4.9874 0.51214 033372 3006377
B-H| 595.72 70.657 61.758 79767 5.2622 0.76524 0.44055 3011.114
3d153d3 59572 70.568 61.690 7.8158 5.1049 0.62489 041560 3011.114

451148 [G-L 595.76 70.682 61.784 7.9950 5.2803 0.78157 0.44807 3012315
595.76 70.593 61.716 7.8357 5.1245 0.64257 042333 3012315
603.61 72.575 63.844 85689 5.8222 1.17401 0.53149 3064.733
603.61 72413 63.722 82785 5.5375 0.91275 0.48986 3064.733

IK-S 64142 76.166 €6.843 80107 5.1155 031493 031767 3270.479

28 S

641.56 76.276 66955 8.1125 5.2168 0.41030 0.38062 3275.459
641.56  76.279 66.957 8.1158 5.2189 0.39914 0.30398 3275.459
641.60 76296 66977 8.1284 5.2326 0.42425 038534 3276.732
641.60 76299 66.979 8.1311 5.2341 041307 031254 3276.732
649.60 78.072 68940 8.5506 5.6267 0.67614 0.47326 3332.894
649.60 78.0! 68.949 8.5 5.6375 0.65990 0.27511 3332.894

3d1%3d48
4sp'4si° [G-L

29 S

JUSN PRI PRI FURDII FURDIPY PRI FURPIN DU PURPIN PUIpIR PRpINY PUIIF PUDIF PEIDIY PURDIR PRI SRpIY PRI

Its effect makes each level low. Other large
effects are not observed.

4.2 Potentials

Here we describe the potential given by (7),
which is the sum of the nucleus, the electronic
(Hartree) and
(-correlation) potentials. This is obtained finally
by the convergence of iteration in the self-
consistent calculation. The potentials are shown

Coulomb the exchange
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Fig. 2 The energy levels for the ferromagnetic 3d and 4s states are shown as a function of the 3d-transition atom series, and compared to
the paramagnetic case. The energy level data for the B-H exchange-correlation potential in Table I and Table Il are used. (a) without Latter

correction, (b) with Latter correction.

in Fig.3 for Sc, Cr, Fe and Cu. In Fig.3, the
potentials for the paramagnetic case and for the
spin up and down in the ferromagnetic case are
compared. They are very different from the
initial potential —2Z/# in the iteration. Fig.3
tells us that the deviations of the potentials for
the ferromagnetic case from those for the par-
amagnetic case are not so large compared to our
prediction. But as mentioned above, this not so
large change of the potential makes the large
change on the energy levels. Therefore, the
energy levels are very much sensitive to the
potential. Particularly, the difference between
the potentials for the paramagnetic and the fer-
romagnetic cases is very small for Fe. On the
other hand, except for Sc, the differences in the
region of small » between both cases almost do
not exist, and their differences occur in the region
7 > 1.5 au. For Sc, the potential for the par-
amagnetic case is deepest in the three kinds of
potentials for » > 1 a.u. However, for » <1 a.u,
the potential is most shallow. The deepest char-
acter for » > 1 a.u. is compensated by this most
shallow potential for » < 1 a.u. This behavior is
not observed for other atoms.

TR 8F 2 A

4.3 Surface charvge density
The spin dependent surface charge density is
given by

o(7) = darip,(r) = 2{ Wnto¥ 2 Ruie® (7) (28)

where R..(7) is a solution of eq. (10) and 7. is
the occupation electron numbers. The computed
density o (7) is shown in Fig. 4 as a function of 7
for Sc, Cr, Fe and Cu. Sum with respect to spin
followed by integration with respect to 7 of ¢ (7)
gives the total electron numbers Z. The total
density o(7) is decomposed into two parts
Cis—sp(#) and Gsa_4s(7), in which o(7) =
Cis—3p (7) + O3a_as (7). Gis_sp(7) is the density due
to the electrons occupying the states from 1s to
3p, and 634_4s () is from 3d to 4s. These quan-
tities depend on the spin. In Fig. 4, these three
kinds of densities are indicated, and the corre-
sponding densities for the paramagnetic case per
spin are also shown for comparison. All densities
are calculated using the B-H exchange-
correlation potential.

At first, we must note that 6ys-s,(#) almost
does not depend on the spin and damps rapidly.
Their values are zero for » > 2.7 a.u. even for Sc
showing the most slowly damping. When these
atoms make the crystal, the muffin-tin radius 7ur
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Fig. 3 The potentials obtained from the self-consistent calculations, in which the B-H potential is used for the exchange-correlation potential,
are shown as a function of 7. “ferro” and “para” mean the ferromagnetic and the paramagnetic cases, respectively. “H-like” is the

Hydrogen-like potential -2Z/r. (a) Sc, (b) Cr, (c) Fe and (d) Cu.

in the APW theory, equal to half of the nearest
neighbor distance, is 3 a.u for Sc, 2.3 a.u for Cr,
2.23 for Fe and 2.39 for Cu. For these four atoms,
01s-3p (#) are almost zero for » > rur. Therefore,
when they make the solid, the electrons from 1s
to 3p stay inside of the muffin-tin sphere.

Next let us consider 634_4 (7). For Cu, since
the electron numbers in 3d states are five for both
up and down spins, its spin dependence is very
weak particularly for small ». However, for » >
2 a.u, its dependence appears clearly. For other
atoms, the spin dependences are almost deter-

mined by the difference between the electron’

numbers with the spin up and down for the given
atomic configuration. Note that there are no
electrons with the spin down for Cr. It is impor-
tant to note that the 3d and 4s electrons with the
spin polarization exist beyond the muffin-tin
radius. This leads that these electrons form the
conduction bands by the crystallization and their
spin polarizations give an origin of the strong
magnetism observed in the experiments.

Since the total surface densities are the sum
of 61s_3p (7) and osq_ss(7), their behaviors are
easily understood from Fig. 4.

Last, we give a comment. It is that the

HEEEM LRSS
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Fig. 4 The three kinds of the surface charge densities 6is-3p(7), G3a-s5(7) and ciowai(7) are shown as functions of r for the ferromagnetic and
the paramagnetic cases. Note that those per spin are indicated for the paramagnetic case. The B-H exchange-correlation is used for these

calculations. (a) Sc, (b) Cr, (c) Fe and (d) Cu.

surface charge densities are not so sensitive to
the potential compared to the energy eigenvalues
mentioned above. This can be roughly seen from
the comparison between Fig. 3 and Fig. 4.

5. Conclusion

We found that the energy levels and poten-
tials are sensitive to both the exchange-
correlation energies and the spin polarized
configuration. The total energies become lower
by taking into account the spin polarizations.
This support that the 3d-transition atoms show

T 84 2 A

the strong magnetic properties by the crystalliza-
tions. The assumptions that the 1s to 3p electrons
can be treated as the frozen core state and the 3d
to 4s electrons become the band electrons are
justified. Accordingly, these 3d and 4s electrons
can make the spin polarized energy band struc-
ture by the crystallizations.

Appendix : Electronic Coulomb Potential
in APW theory

One of authors wrote the wrong expressions
in ref. [3]. They are egs.(43) and (44). The eq.
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(44) must be corrected as follows,

1 3Qs  4mp p

(A1)
This expression can be derived in the following
way. The average potential V, outside the
muffin-tin spheres can be calculated by

N S
1/0 = Q—EQS./;),“ V(r)dr,

where V (r) is the potential outside the spheres.
Because V (r) is the same for both A-charge and
fictious charge models, it is easy to use V (r) due
to the fictious model. The following calculations
are straightforward although long.

(A2)
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