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1. Introduction

In 1989, F.M. Dannan and S. Elaydi introduced a new notion of stability, which will be called
uniform Lipschitz stability, for systems of differential equations. This new notion lies somewhere
between uniform stability on one side and the notions of asymptotic stability in variation of Brauer [4]
and uniform stability in variation of Brauer and Strauss [3] on the other side. The notion of uniform
Lipschitz stability is new only as nonlinear systems, since it is equivalent to uniform stability in linear
systems [1].

An important feature of uniform Lipschitz stability is that, unlike uniform stability, the linearlized
systems inherit the property of uniform Lipschitz stability from the original nonlinear systems.

In [2], F.M. Dannan and S. Elaydi studied the uniform Lipschitz stability theorem using the
techniques of Liapunov’s second method.

In 1991, M. Kudo showed some generalization of this theorem [5].

In many applications, we need to see the qualities not of the whole solutions but of partial.

The main purpose of this paper is to introduce a new notion of uniformly Lipschitz stability, which
we named partially uniform Lipschitz stability, for systems of differential equations, and to state the
partially uniform Lipschitz stability theorem using the techniques of Liapunov function satisfying a
weak condition.

2. Definitions and Notations

Let I and R* denote the intervals [t,, o) and [0, o) respectively. And let R" denote Euclidean
n-space.

For x € R", let the norm of x be |x||. We shall denote by C(I X R"x R™, R¥) the set of all continuous
function f defined on [ X R"XR™ with value in Rk.

Let F(t, x) € C(IxD, R" and F(t, 0) = 0, where D is an open set in R". For systems
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a solution through a point (t,, x,) € IXD will be denoted by such a form as x(t, t,, X,).
Let f(t, x, y) € CAXR"XR™, R"), f(t, 0, 0) = 0 and g(t, x, y) € C(IXR"XR™, R™), g(t, 0, 0) = 0.
We consider systems of differential equations
dx

- i f(t, x, y)

............................................................ (2)
dy
dt = g(ts X, Y)-

Further, we consider a scalar differential equation
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where ¢(t, u) & C(IXR*, R), ¢(t, 0) = 0 and ul(t, t,, u,) = u(t) is a maximal solution of (3) with
u(to, to, Ue) = u,.
We introduce the following definitions.

[Definition 1] The zero solution of (1) is said to be uniformly Lipschitz stable if there exist M = 1 and
& > 0 such that | x(t, to, Xo)| = M|x,|| for |x,]] < 6 and YVt =t, = 0.

[Definition 2] The zero solution of (3) is said to be uniformly Lipschitz stable if there exist M = 1 and
d > 0 such that u(t, t,, uy) = Mu, for u, < d and vt =t, = 0.

[Definition 3] The zore solution of (2) is said to be partially uniformly Lipschitz stable with respect
to x if there exist M = 1 and ¢ > 0 such that [|x(t, to, Xo, ¥o) | = M(lI %ol + Ivol) for Ixell + lvel < &
and Yt =t, = 0.

[Definition 4] Corresponding to V(t, x) € C(IXR", R*) and V(t, x, y) E C(IXR"XR™, R*), we define
the functions

Vinlt, ) = lim sup 4 {V(t-+h, x-+hF(t, x))—V(t, x)}
and
Vialt, x, y) = lim sup% {V(t+h, x+hf(t, x, y), y+hg(t, x, y)—=V(t, x, y)}

respectively. If V(t, x) and V(t, x, y) satisfy locally Lipschitz condition with respect to x and (x, y), then
Vin(t, x) = V(t, x) and V{y(t, %, y) = V'(t, X, y) respectively.
In case V(t, x) and V(t, x, y) have continuous partial derivatives of the first order, it is evident that

Viy(t, ) = 3V+3—V F(t, X)

and

av BV

Vil x, y) = -f(t, x, y)+ -g(t, X, y),

where “+"” denotes a scalar product.
3. Preliminary results

[Theorem 1] Suppose that the maximal solution u(t) of (3) such that u(t,) = u, stays on interval
[a, b].
If a continuous function V(t) with V(t,) = u, satisfies
V() = ¢(t, V(1),
where ¢(t, u) is continuous on an open connected set ) € R? then we have
Vi) <ut) forast=h.
For the proof of this theorem, see references [6], [7], [8].

[Theorem 2] Suppose that there exist two functions V(t, x) and ¢(t, u) satisfying the following
conditions ;
(i) ¢ EC(IxR*, R) and ¢(t, 0) = 0,

ik 6 4£11 H



— 180 —
Masamichi Aso, Shoichi SEiNo and Miki Kupo

(i) V(t, x) EC(IxS, RY), where S = {x]| x| < p, x ER"}, V(t, 0) = 0, V(t, x) is locally Lipschitz
in x and satisfies

b(lx]) = Vi(t, x),
where b(r) € C([0, p], R*), b(0) = 0, and b(r) is strictly monotone increasing in r such that
b~Yar) = rq(e) for some function q, with qla) =2 1 if @ = 1,
(iii) Viy(t, x) = ¢(t, V(t, x)), where (t, x) EI1XS.
If the zero solution of (1) is uniformly Lipschitz stable, then so is the zero solution of (1).
For the proof of this theorem, see reference [2].

[Theorem 3] Suppose that there exist functions V& C(IXR", R*), a € C(IXR*, R?), c E C(IxR*, R")
and ¢ € C(IXR*, R) such that
(i) VI(t, x) is locally Lipschitz in x and V(t, 0) = 0,
(i) a(t, [x]) = V(t, x) = c(t, [x]D,
where a(t, r) increases monotonically with respect to t for each fixed r, aft, 0) =0, a(t, r) > 0 for
r # 0, ke(t, s) < c(t, ks) for a positive constant k and if a(t, r) = c(t, s), thenr = s,
(iii) Vi, x) = &(t, V(t, x)).
If the zero solution of (3) is uniformly Lipschitz stable, then the zero solution of (1) is uniformly
Lipschitz stable.
For the proof of this theorem, see reference [5].

4. Main result

[Theorem 4] Suppose that there exist functions V& C(IXR"XR", R*), a &€ C(IXR", RY),
b& C(IxR*, R*) and ¢ &€ C(I XR*, R) such that
(i) V(0,0 =0,

(i) a(t, [x|) = V(t, x, y) S b(t, [x]+ 1y,
where a(t, r) increases monotonically with respect to t for each fixed r, a(t, 0) = 0, a(t, r) > 0 for
r % 0, kb(t, s) < b(t, ks) for a positive constant k and if a(t, r) < b(t, s), thenr = s,

(iii) Vit x, v) = &(t, V(t, x, y)).

If the zero solution of (3) is uniformly Lipschitz stable, then the zero solution of (2) is partially

uniformly Lipschitz stable with respect to x.

[Proof] From the uniform Lipschitz stability of the zero solution u = 0 of (3), there exist ¢ > 0 and
some constant M = 1 such that u(t, to, us) = Mu,, whenever u, < ¢. For ¢, there exists 6 > 0 such that
if %ol +1vel = &, Vito, Xo, o) = 0 by using VE C and (i). Therefore if we put V(to, Xo, ¥o) = uo, we
have u, < & and u(t, to, u,) = Mu,. Using the comparison theorem, from the condition (iii), we have
V(t, x(t), y(t)) = ult, to, uo).
Hence, by the condition (ii), we have
a(te, [|x(t, to, X0, Yo) ) = alt, [x(t, to, Xo, Yo) )
< V(t, x(t), y(t)
< ult, to, uo)
= Muy,
= MV(to, Xo, Yo)
< Mbito, [ %ol +lvol)
< blte, M %[ + Iyol))-
Thus we have |x(t, to, Xo, Yo)| = M([xo]+ [[¥s]l) which shows that the zero solution of (2) is
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partially uniformly Lipschitz stable.
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