との相互作用

大野進通・高清水誠美*

Interaction of Polymethacrylic Acid with Sodium Dodecyl Sulfate

Nobumichi OHNO and Satomi TAKASHIMIZU

(1994年8月22日受理)

The interaction of Polymethacrylic acid (PMA) with Sodium dodecyl sulfate (SDS) in aqueous salt solutions was investigated by pH titration method. Modified pH titration curves of PMA-SDS system under various SDS concentrations seem to indicate that SDS binds to the hydrophobic region of PMA which is in a compact form. But PMA releases SDS when it takes a random coil form, with increasing degree of dissociation.

The thermodynamic parameters related to the transition of PMA-SDS system were calculated from titration data. By comparison of the results with those for PMA system, we discussed the influence of SDS on the conformation of PMA.

1.緒 言

溶液中における高分子と界面活性剤との相互作用 は化学工業の種々のプロセスにおける技術面で重要 であるのみならず,生体中での物質輸送や生体高分 子のコンホメーション変化と機能などにも関連する ことから,多くの研究者の興味を引き,これまでに 数多くの報告¹¹がなされている。

しかし,その多くは水溶性の中性高分子あるいは 側鎖に疎水基を持たない高分子電解質と界面活性剤 との相互作用に関するものであり,疎水性高分子電 解質と界面活性剤との相互作用に関する研究,中で も同種の電荷を有する疎水性高分子電解質と界面活 性剤との相互作用についての研究例は少ない。

本研究で取り上げたポリメタクリル酸 (PMA) は、側鎖に疎水基と解離基を併せ持つ典型的な疎水 性高分子電解質であり、水溶液中で、低解離域では 側鎖メチル基間の疎水相互作用により安定化された コンパクト形態にあるが、側鎖カルボキシル基の解 離の進行にともなって、ある解離度から急激に通常 の拡がったランダムコイル形態へ分子内転移するこ

*日本色材工業研究所

とが知られている²⁾。

このような疎水性高分子電解質のpH-誘導分子 内転移は、球状タンパク質の変性過程に類似してお り、PMAの様に一次構造が明らかで転移を伴う疎 水性高分子電解質と界面活性剤との相互作用につい て研究することは、球状タンパク質の疎水特性さら には三次構造形成のメカニズムに関する基礎知識を 得る上でも、重要であると考えられる。

上記のような背景から,原田ら³⁰は疎水性ポリア ニオンである PMA とアニオン界面活性剤である ドデシル硫酸ナトリウム (SDS)の相互作用を取り 上げ,平衡透析法を用いての研究から,SDS⁻イオン が PMA に結合することを示しており,その結合率 も評価している。また pH 滴定曲線も結合に伴って 異常性を示すことが報告されているが,これについ ては定量的な取り扱いはなされていない。

このような事から、本研究では PMA と SDS の 水溶液中における相互作用を、pH 滴定により詳細 に調べ、PMA のコンホメーションやその変化に対 する SDS の影響について検討するとともに、PMA と SDS との疎水相互作用を定量化することを試み たので報告する。

2.実 験

2・1 試料および試薬

PMA は、精製メタクリル酸を、過酸化水素を開始 剤として水溶液中で重合した。これをメタノール-エ チルエーテル系で分別し、分子量 $M_v = 6 \times 10^4$ の分 別試料を実験に使用した。この PMA を純水に溶解 させたのち、混合イオン交換樹脂 (Amberlite CG-120, CG-400B) カラムを通過させ、非解離水溶液と したものをポリマー原液とした。

SDS は市販特級試薬(和光)を精製エタノールで 二回再結晶したものを使用した。滴定に使用したア ルカリ規定液(和光),並びに NaCl (和光,特級) は市販品をそのまま使用した。

2 · 2 pH 滴定

オリオン社デジタルイオンメータ801型を用い,窒 素気流中,25±0.1°Cで,ポリマー原液10 ml に, NaCl 溶液 (0.1 M~3 M) を2 ml と純水あるいは SDS 溶液 (1~4 mmol/l) を3 ml 加えた試料溶液 15 ml に対して,0.997 M-NaOH 水溶液をマイクロ メータシリンジより最大0.3 ml まで加えて滴定し た。従って,試料溶液の濃度変化は無視できる程度 である。電極,メータの較正等は,既報40の方法に従 った。また,温度依存性の実験は5°C,45°C で行い, その他の条件は25°C の場合とまったく同様である。 PMA の解離度 α は次式により計算した。

 $\alpha = [COO^{-}]/[COOH]$

= ([H⁺]+[NaOH])/[COOH] ………(1) ここで, [COOH]は PMA の側鎖カルボキシル基の 全 モ ル 濃 度 で, 滴 定 の end - poit (d^2 pH/d [NaOH]² = 0)より決定した。[COO⁻]は解離した カルボキシル基のモル濃度で,実際には,加えたア ルカリ量[NaOH]と水素イオン濃度[H⁺]の和とし て求めた。[H⁺]値は,同一条件下でのブランクテス トから得られた活量係数を補正して,pH 値から計 算した。

また、見かけの解離定数 pK は次式で与えられる。 pK = pH-log[$\alpha/(1-\alpha)$]

 $= pK_0 + (0.434/RT) (\partial G_e / \partial \alpha)$ ……(2) ここで、 pK_0 は PMA の固有解離定数、 G_e は PMA の繰り返し単位 1 mol (1 monomol) あたりの静電 自由エネルギーである。

3. 結果および考察

PMA の中性塩水溶液中の pH 滴定挙動について は、これまでに多くの研究²⁾がなされているが、同一 試料による同一条件下での比較が必要と考え、初め に SDS を含まない系の pH 滴定を行った。

図1に,25°C,種々のNaCl濃度(以下イオン強度 Iと略記する)下におけるPMAの全解離域におけ る通常のpH滴定曲線を示した。図から明らかなよ うに,イオン強度の増加に伴って滴定曲線は低pH 側にシフトし,かつ各滴定曲線とも低解離域におい て幾分上に凸のカーブが見られる。

これらの挙動を詳細に解析するため、(1)および(2) 式より解離度 α と見かけの解離定数 pK を求め、各 イオン強度下における PMA の変形 pH 滴定曲線を 得た。結果を図2に示した。

変形 pH 滴定曲線は,いずれのイオン強度下でも, 全体的には高分子電解質に特有な正の傾きを示す。 これは, PMA の固定解離基であるカルボキシル基 の解離の進行に伴って,高分子鎖上の荷電密度が増 加し,未解離のカルボキシル基の解離が抑えられる ためと考えられている。また,イオン強度の増加に 伴って,変形 pH 滴定曲線全体が低 pK 側にシフト し,強酸性を示すことが明らかである。これは,側 鎖の固定解離基間の静電相互作用に対する NaCl の 遮蔽効果によるものである。

また,低解離域から中解離域にかけて,上に凸の

図1 種々のイオン強度下における PMA の pH 滴定曲線 ポリマー濃度:1.61×10⁻² monomol/ℓ

秋田高専研究紀要第30号

異常なカーブがみられる。この初期勾配の大なる所 は、PMAの側鎖メチル基間の疎水相互作用によっ て安定化され、かつ荷電密度の高いコンパクト形態 である。それが側鎖カルボキシル基の解離の進行に 伴い,固定解離基間の静電斥力が増加し,その斥力 が、側鎖メチル基間の疎水相互作用に打ち勝った点 で、コンパクト形態から、転移域を経て、 ランダム コイル形態(以後ランダム形態と略記)へ分子内転 移することを示している。この変形 pH 滴定曲線を 利用して、これまでと同様の方法4.5)により、PMAの コンパクト形態からランダム形態へ、非荷電状態で 分子内転移するときの標準自由エネルギー変化 ΔG⁰, を各イオン強度について求め, 表1(a)にまとめ た。これらの ΔG^{0}_{t} 値は、仮想曲線(図中の破線)の 見積りの曖昧さからくる誤差を考慮すれば、これま でに報告されている値2)と比較して、ほぼ妥当な値 と考えられる。

図 3 に、25°C、I = 0.400において、種々の濃度の SDS を含む PMA の変形 pH 滴定曲線を示した。ま た、比較のために同一条件下の SDS を含まない系の データも再度プロットした。

図から明らかなように、SDS の濃度が増加するに 伴い、 $\alpha = 0 \sim 0.4$ 付近の山が次第に高くなり、かつ ピークの位置が低解離側にシフトしてくる。これは SDS の濃度の増加に伴って、SDS の PMA への結 合量の増加を示していると考えられる。すなわち SDS⁻ イオンが PMA と同一符号のイオンであるに

ポリマー濃度:1.61×10⁻² monomol/ℓ

もかかわらず,低解離域では PMA の側鎖のメチル 基が形成する疎水領域へ SDS⁻イオンのアルキル基 が疎水相互作用により結合し,その結果として PMA上に SDS⁻イオンの電荷が増加するため,分 子全体の荷電密度が増加し,SDS を含まない系に比 べて,より弱酸性を示すものと考えられる。

一方, $\alpha = 0.4 \sim 1.00$ 高解離側では, PMA-SDS 系の解離挙動は, SDS 濃度によらず, PMA 単独の それと良く一致している。これより, 疎水領域が存 在しない高解離域のランダム形態の PMA には, ポ リマーイオンと SDS⁻ イオン間の静電斥力が強く, SDS は結合していないと考えられる。

図3の低解離域の初期勾配を利用し、変形 pH 滴 定曲線を $\alpha \rightarrow 0$ へ外挿することにより、各 SDS 濃 度下での PMA の固有解離定数 pK₀ を求めた。結果 を図4 ならびに表 1 (b)に示した。

図4から明らかなように、PMAのpK₀値は、 SDS 濃度の増加に伴ってスムースに増加する。また、SDS 濃度→0への外挿値は同一条件下でSDS を含まない系のpK₀値(4.72)と良く一致する。本 実験条件ではSDS 添加によるイオン強度への影響 は無視できる程度であるから、SDS 添加によるpK₀ 値の増加は、以下に述べるようにコンパクト形態の PMA へ SDS⁻ イオンが結合することによると考え られる。

いま, $\alpha = 0$ の PMA に SDS⁻ イオンが結合した ときの固有解離定数を pK_{0(SDS)}, PMA 単独のそれを pK_{0(S=0)}とすると高分子電解質の一般式⁶⁾より次式

表1 PMA 系並びに PMA-SDS 系の熱力学的パラメ

	-	9
(a)	PMA	系

温度 [°C]	NaCl 濃度 I[mol/ℓ]	固有解離定数 pK ₀ [—]	∆G⁰t (cal/monomol)
	0.013	5.14	1 4 5
2 5	0.040	5.06	140
	0.133	4.93	1 3 5
	0.400	4.72	1 3 0
5	0.400	4.72	1 3 0
4 5	0.400	4.72	1 4 0

(b) PMA-SDS (1=0.4) 系

温度 [*C]	SDS 濃度 [mmol/ ℓ]	рК。 (-)	$ \begin{array}{ccc} \Delta G^{0}{}_{total} & \Delta G^{0}{}_{t} & \Delta G^{0}{}_{b} \\ \text{(cal/monomol)} \end{array} $
	1	4.89	205 150 55
2 5	2	5.05	265 155 110
	3.2	5.41	3 3 0 1 3 0 2 0 0
	4	5.75	360 50 310
5	2	5.03	150
4 5	2	5.07	120

△G°t:転移の標準自由エネルギー変化

△Gº,: 複合体から SDS を引き離すときの標準自由エネル ギー変化

 $\Delta G^{0}{}_{total} = \Delta G^{0}{}_{t} + \Delta G^{0}{}_{b}$

が得られる。

 $pK_{0(SDS)} = pK_{0(S=0)} + 0.434 (\Delta G_e/RT)(3)$ ここで、 ΔG_e は SDS⁻ イオンが結合することによっ て生ずる静電相互作用のエネルギーである。

すなわち、SDS⁻ イオンの結合量の増加に伴って、 分子表面の電位も増し、上式の ΔG_e 値が増加するため、pK。値が増加するものと考えられる。

図5に、PMA-SDS 系の滴定曲線の解析の一例を 示した。図中の実線はPMAとSDSの複合体が PMAの解離にともなって、転移をしながらSDSを 放出する実測された滴定曲線である。また、一点鎖 線は、PMAがポリアクリル酸のように転移を伴わ

図 5 PMA-SDS 系の変形 pH 滴定曲線の解析例

ないで解離すると仮想した滴定曲線であり、図2の I=0.400の場合と同一の仮想曲線である。この両者 の曲線で囲まれた面積より、PMA と SDS の複合体 が、コンパクト形態からランダム形態へと転移しな がら SDS を放出するときの標準自由エネルギー変 化 ΔG^{0}_{total} (以後、全自由エネルギー変化と称する) が求められる。

さらに、図中の破線で示した固有解離定数 pK₀値 と高解離側のランダム形態の実測曲線をスムースに 結んだ曲線を、転移を伴わないで、解離しながら SDS を放出する仮想的な滴定曲線と考えると、先の 全自由エネルギー変化 ΔG^{0}_{total} を、二つに分離する ことができる。

すなわち,実線と破線で囲まれた部分の面積から, 複合体の転移の標準自由エネルギー変化 ΔG°_t が求 まり,斜線の部分からは,複合体から SDS を引き離 すときの標準自由エネルギー変化 ΔG°_b が求められ る。

このようにして求められた PMA-SDS 系の種々 の熱力学的パラメータを表 1 (b)にまとめて示した。 ここで,

表 1 (B)の結果から、PMA-SDS 系では、 ΔG°_{b} 値が SDS の濃度とともに増加しており、これより SDS 濃度の増加に伴って PMA への結合量も単調に増 加することが考えられる。

一方, ΔG⁰t 値は, SDS 濃度が1~2 mmol/l の範

秋田高専研究紀要第30号

囲では150~155 cal/monomol で、表1(a)に示した 同一条件下の PMA 単独の ΔG^{0}_{t} 値より明らかに大 きい。この事は、SDS のアルキル基がコンパクト形 態にある PMA の疎水領域に結合することにより コンパクト形態がより安定化しているものと考えら れる。それに対して3.2~4 mmol/l の高濃度側で は、SDS 濃度の増加に伴って、逆に ΔG^{0}_{t} 値が減少す る傾向を示している。これは SDS⁻ イオンが PMA と同じマイナスイオンであり、PMA に結合する量 が増えるにしたがって、高分子鎖上の荷電密度も増 大し、ついには疎水結合による安定化効果を上回る 静電斥力が働くため、コンパクト形態が緩み、逆に 不安定になることが考えられる。図6に、これらの 関係を模試図で示した。

PMA 単独の系、並びに PMA-SDS 系の pH 滴定 曲線の温度依存性について、5°C~45°C の範囲で調 べた。結果を表 1 (a)、および(b)にまとめた。PMA 単 独の系では、pK。並びに ΔG^{0}_{t} 値の温度依存性は、ほ とんど見られなかった。それに対して PMA-SDS 系 では、5°C のデータはクラフト点以下で比較はでき ないものの、高温側で ΔG^{0}_{total} 値が減少する傾向が 見られ、PMA 単独の場合とは挙動が異なるようで ある。温度依存性の詳細については、今後、実験条 件を変えて、さらに調べる必要があろう。

図6 コンパクト形態と転移のモデル

4.結 言

PMA と SDS との水溶液中における相互作用を pH 滴定により調べた。変形 pH 滴定曲線の SDS 濃 度依存性の結果から,低解離域のコンパクト形態で は PMA の側鎖メチル基間で形成する疎水領域へ SDS⁻ イオンが結合しているが,PMA の解離の進 行にともなって PMA がランダム形態へ分子内転 移し疎水領域が消滅するため,それまで結合してい た SDS⁻ イオンを放出するものと考えられた。

転移を伴わない PMA-SDS 複合体の仮想滴定曲 線を用いて、非荷電状態における転移の標準自由エ ネルギー変化 ΔG^{0}_{t} と、複合体から SDS を引き離す ときの標準自由エネルギー変化 ΔG^{0}_{b} の評価を試み た。これらの値や pK₀ 値を PMA 単独の系のそれと 比較した結果、SDS 濃度の増加とともにコンパクト 形態の PMA への結合量は増加し、SDS の低濃度側 では、SDS のアルキル基による疎水結合によりコン パクト形態が安定化されるが、高濃度側では、結合 SDS⁻ イオンによる静電斥力が増加するため、コン パクト形態が逆に緩んで不安定になると考えられ た。

最後に,本研究を行うにあたって,種々のご討論 を頂いた創価大学工学部・須貝新太郎教授,並びに 静岡県立大学・原田茂治教授に深謝致します。

参考文献

- 1) たとえば総説として,
 - a) I.D. Robb, in "Anionic Surfactants", Marcel Dekker, New York (1981) p. 109
 - b) 早川勝光, J.C.T. Kwak, 表面, 23, 169 (1985)
 - c) 佐竹 巌, 表面, 28, 834 (1990)
- 2) たとえば,
 - a) V. Bottiglione, M.Morcellet, C. Loucheux, Makromol. Chem., 181, 469 (1980)
- b) 須貝新太郎, "生物物理工学", IPC (1991) p. 67
- H. Oshikubo, T. Komatsu, T. Nakagawa, S. Harada, Rept. Progr. Polym. Phys. Jpn., 30, 9 (1987)
- 4) 大野進通, 素材物性学雑誌, 3, 49 (1990)
- N. Ohno, K. Nitta, S. Makino, S. Sugai, J. Polym. Sci., Polym. Phys. Ed., 11, 413 (1973)
- 6) 須貝新太郎,新田勝利,高分子実験学,13,"高 分子電解質",共立(1978) p.41