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Let us consider the system of differential equations
%‘(t) =x*(t), (1)
x}(t) = —x'(t) —x* () +u(t),
under the hypothesis that the initial condition is

x*(0) =x} (i=1,2). » (2)
In addition, let the control region U be defined by the inequality

[u(H|<1. (3
We want to determine the optimal control u*(t) which minimizes the deviation

e(T) =Ix(THI, (4)

at the terminal point of the trajectory, where T is fixed.
We shall consider the application of the Pontryagin maximum principle to the
solution of the above problem.
Now we introduce a new variable
X =e() = [x1(D) | . (5)
The problem which minimizes e(T) is equivalent to minimizing x%(T) = |x(T)|
under conditions (1) and (3).

The system of differential equations with the additional variable is the form

oty = { X(t) =xX(), it x()>0,
. —x!(t) =—x*(t), if x'(t)<0, (6)
xI(t) =x*(1),
X3() = —XI(t) = X(B) + u(t),
where the initial conditions are:

(0 =e , x(0)=x} , (i=1,2). 7
The Hamiltonian function H in this case has the form
H(p,x,u)=—pyx'+ (£ Po+P1— o) X*+psUl. (8)
From (8), the condition which maximizes H with respect to u is
p.u>0. (€°D)

Taking (9) and the condition (3) into account, we have
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1, if p>0,
t)= 0
0= { 17 i o o
Furthermore, we obtain the system of equations
e.__ OoH _
Po  0x° 0, ]
. __ H _ l 1
P1 oxt P, ( L
oH  _
i)2=— o2 — ThmPitPe
for the auxiliary variables py, p, and p,, where the boundary condition is
p:(TH =0, (i=1,2) . (12)
We solve (11) : p(t)=2, a3y
where 4 is a non positive constant, and
@D — (P D)+ (P H=0 . 14
The general solution of this equation can be written in the form
pl(t)=e"lft(clcos \/—%t + ¢,sin \/—g—t) Fi, l
(15)
p(t)=%e 'é_t(cl (cos\/—gt —+/ 3 sin \/—g t+c, (v 3‘cos\/ g t+sin\/f-23—t)). J
By virtue of (12), we determine ¢, and ¢, :
o=t \/%e——é—T (\/‘3'cos\/~~g~T+ sin\/»g—T) , ]
, 16y
- 3 |
C,=TF \/—%e +T (cos\/wg——’l‘— v ;{sin\/% T . i
Conseqﬁently
) 4 3 (t— . 3
mt=F S et t=DgnV3 o1y an
V'3 2
Taking _(10) and 4 < 0 into account, we have two cases as follows.
Case (I). When x! (t)>0 ,
W= 1, if sin(\/--g- (t=T))>0 ,
w(=—1, if sin(‘/_—g-(t—T)Ko ,
i.e ()= 1 if —=mr+T<t< —%(2m+1)n+T
B ’ V'3 V'3 ’
2 | 4 a8
* = — i - —_ —— ms
u*(t) 1, if J3 (2m 1)n+T<t<\/ 3 mz+T J
Case(II). When x!(t)<0 ,
. e V3 4
()= 1, if sin( —z(t—T))<0 ,
w(t)y——1, if sin(‘/—g-(t—’r)»o ,



ie., (= 1, ;if V3 - (2m— 1)T+T<t<\/3 mr+ T l

a9

|.s=- w']m

wr(t)=—1, if m:r+T<t\\/_(2m+1) +T.

JT

w

2r
As we have seen above, it is obvious that the switching occurs every" \/*:; units

of time,
Let us solve the system of equations (6) and study ‘the segments of trajectory
corresponding to a certain time interval on which u*(t)=1 and u*(t)=-1. »~
Next we shall consider the synthesizing the optimal trajectory of the system (6).
Frpm (6), we thain L A o
EFD T+ &EFD+EFD=0, 20)
corresponding to u*(t)=+1 .
We can immediately find the general solution of this system :
x1 () =e~ Fl(c, cos \/—gjt+czsiu \/g tH+l, - 1 s
S . sl
x2(t)=—e %t(c sm( 7 t+ 6 )—c;cos( V—g t+ %)) .

According to the initial condition x*(0)=x} , (i=1,2), we decide c, and c,
1
¢ =x; F1 , =J3 @2+ x FD) . (22)

Since it is difficult to get the synthesis by means of -eliminating thé parameter
t, we shall discuss the solution which is transformed into the polar coodinate

"~ First of all we consider the homogeneous system

%l(t) e . Pl . ’...:(233
x2(t) = —x1(t) —x¥(t) .

- By means of a linear transformation

yl=—x! — .;_xz ,

_ @9
p=Y3x ‘
system (23) can be reduced to the form | - N ,» i
= —xwm-"3 %, l
@5

X(t) = “/% X(t)— —;— X J
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Its general solution is :

xi(t)=ce™ +t cos( \/—% t+a) ,

(26)
x(t)=ce” "é_tsin( \/——vg:t+a) ,
where ¢ and « are constants of integration.
we put X!=p cos R
’ x2=z sin : , @n
then (26) is : p=ce_’é"t s
o= \/—3 t+a . @8

Eliminating the parameter t, we have the polar equation of the phase trajectory

1
-37 29)
p=Ke Ve, ~
where K = Ce\/ 3
Next we consider the non homogeneous system
xl(t) =— «x‘(t)— \/—ix’(t)+v1
30
20 =S em-Tewmev
where vi=0, |
vi=u . I (31)

It follows from (31) that the point v=(v!,v?) describes a segment V with the
endpoints e, and e; whose coordinates are :
e=00,-1), =01 . : 32)
We shall denote by w=g(v) the point whose coordinate (w!, w?) satisfies the
relations
.__;_wl_ ‘/__ng_’_vl:() .’

V3 1

__wl__wz v2=( s
2 +

33)

for any point v=(v!,v?) in the phase plane,

The affine transformation g translates from the segment V to the segment W
with the endpoints h; and h,.

From the relations

~ 1 - ~he rela o,

(€2
V3 1 _1p2 4 a2
—2h 2h +e -0 s
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the coordinate (h}, h?) of the endpoint h; (i=1,2) is determined.

We get
=5 b =3, 1y 35

If the optimal control v takes on the value e; (i=1,2) on a certain time inter-

val, then the system of equations of the object is the form

§K0=_%w(o V3x%0+e
- (i=1,2) (36)
.2 . \/ 3 . 2
x2(t) = " xl(t) »—x (t)+ei

It follows from (34) and (36) that the system (30) is described by the equations
T 2

(X‘(t)—hl )'=-é—(X‘(t)—h:)—\/—g(xz(t)—ht) , 1

@D

(2 N Vg 1 2
X1tk )'= V5 GO -h—FE®-h) .

We draw two half-lines which is perpendlcular to the segment V passing through
the origin. Let a;(=n) be the angle formed by these lines. We denote by p: any non
zero vector which lies in the region defined by the angle,

In this case the Hamiltonian H to the system (30) is the form

H=(—%pl+ 3 3 poxt + (= V3 3 pl—--pz)x2+p1v1+pzv2 ; 38

so that it is obvious that H attains its maximum simultaneously with p;v!+p,v? .

The system of equations for the auxiliary variable p; is the following form :

c__oH 1 V3
Pi=— ax1_2 P: 2p2’
39
oH V3
P2=— > 2 p1+?
Its general solution is :

p(t) —keEt cos(v—g— t+h) ,

C)
p(t) = —keZt sm(\/—-t+,8)

where k and g are constants of integration.

2
It follows immediately from (40) that the switching occurs every «/—?ﬂ .

Now we can construct the switchingvcurves in the phase plane which determine
the synthesis of the optimal control, i '
a

Let P; be the similarity transformation with center at h; and ratio ex/ 3,

accompanied by a clockwise rotation about h; through the angle a;.
Let A; O be the arc of the trajectory of system (37); which terminates at the
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point O, and which is spaned toward the equilibrium point by the angle a;.

Then the arc B;_;A;., can be obtained from the arc A;O with the aid of a
transformation P;_;.

Proceeding in this way, let us draw the two curves OA;B;Ci----- , (i=1, 2),
piecewise smoothing curves, which start at the origin, and which represent the locus
of the switching points, .

Thus, the sﬁrnthesis of the optimal control and the form of the optimal trajec-
tory are showen in the next figure,

X

Everything that was said above refers to the synthesis of the optimal control
in the plane transformed by (24), so that the picture of the synthesis of the optimal
control of the original x!, x? plane is obtained by this affine transformation.

Thanks are due to our collaegue Mr. Takashi Yoshimura in our college who has
helped us with constructive suggestions.
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