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1. Introduction

We need very often the calculations of the matrix
elements given by the two center integral in the solid
state theory. The matrix elements are given by <¢ |
V'|4>, in which ¥ is the operator of a physical
quantity, and ¢ and ¢ are the atomic wave functions
of an electron having the centers at the different
positions given by A and Ao, and therefore ¢ =
vir—A4) and ¢ = ¢(r— Ao The positions
specified by A and A, are denoted by 4 and O,
respectively, and generally the position O can be
taken to be the origin (Aq = 0). This matrix element
is the two center integral since it includes the wave
functions having the different centers. When V is the
difference between the atomic and the crystal periodic
potentials, the matrix element means the overlap
integral between the sites 4 and O, and plays an
important role for calculations of the band structure
in LCAO method [1]. On the other hand, when V
is the momentum p, it is the transition probability
between the two states at the different sites in the
absorption of a photon [2].

As is well known, an idea of calculating the matrix
element given by the two center integral is to expand
Y(r—A4) and 4(r) in terms of the spherical har-
monics centered at the origin. As a result of it, when
V is an operator with the s-symmetry, only the
components of the spherical harmonics with the same
! and m in the expansions of ¢ and ¢ can contribute
to the matrix element, which leads to the selection
rule of Al =0 and Am = 0. For V with the p-
symmetry, the selection rule is A/ = +1 and Am =
0, +1. It is also easy to obtain the similar selection
rules for ¥ with the other symmetries of such as d, f
and so on. Therefore, the problem is to expand ¢
and ¢ around the origin in terms of the spherical
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harmonics. The expansion of ¢ is easy since the
center coincides with the origin. However, the expan-
sion of y is not so easy because the center is deviated
from the origin.

My aim in this note is to expand y(r—A) around
the origin using the spherical harmonics having the
center there. Below, we adopt the two following
assumptions. 1) y(r) is in the / state, in which the
values of / =0, 1, 2, 3 correspond to s, p, d and f
states, respectively. 2) ¢(r) is a linear combination
of the spherical harmonics Y,,,(8, ¢), which reflects
the symmetry of the crystal field due to the surround-
ing ions. When the crystal has the cubic symmetry,
¥(r) denotes one of the cubic harmonics for the
given [.

2. Formulation

The four coordinate systems are needed to argue
the expansion of ¢(r—A). We put forward the
argument by defining these coordinate systems in the
suitable sequence. The first kind of the system,
O-xyz, is an arbitrary system, in which the origin
coincides with the position 0. The vector r indicates
the position of an electron in the O-xyz system and A
denotes the position 4 which is the center of the
wavefunction . We put r = (x, y, z) = r(sin 4 cos
¢, sin @ sin ¢, cos ) and A = A(sin 8 cos a, sin §
sin a, cos ), in which (r, 4, ¢) and (1, 8, a) are the
polar coordinates of r and A, respectively, in this
system. The second kind of the coordinate system is
that the origin is the position 4 and each axis is
parallel to the corresponding one in the O-xyz system
mentioned above. This system is denoted by A-x’y’
z’. The vector R(= r— ) gives the position vector
of the electron in this system. The polar coordinates
R, @ and ¢ are defined by R = R(sin §’ cos ¢’, sin
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&' sin ¢’, cos §’). From the assumptions for the
described in § 1, ¥+(R) is purely in the / state in this
system, and is given by

Y(R) = QR) 5 anYiu(, &), M

where Q,(R) is the radial part, Y;,(8', ¢’) is the
spherical harmonics and a;, is the expansion
We use the definition in ref. [3] for
Yin(8, ¢) and it is given by

coefficient.

Yon(Bs ¢) = emkimP,(cOS 6)721—£—exp(im‘ﬁ). @)

Y (_1)(rn+|mnfz‘ {33}
_ j2I+1 (I—|m|)!
K= \/ 2+ ml) e

where P,™(cos ) is the associated Legendre function.
The third kind of the coordinate system is made from
the O-xyz system in the following way. We rotate the
O-xyz system around the z-axis by the angle « and
get the O-£Yz system. Next, we rotate the 0-£Yz
system around the Y-axis by 8. The system obtained
from these twice rotations is referred to as the O-
XYZ, for which the direction of the Z-axis is in the
same one as 4. The polar coordinates of r in this

system is given by r, @ and Q.

The fourth kind of the system is obtained by the
parallel movement of the O-XYZ by A and is de-
noted by the 4-X’"Y’Z’, in which the origin is the
position 4. The polar coordinates of R in this
system are R, ® and @’. Since each axis in the A-X"
Y’Z’ is parallel to one in the O-XYZ, we obtain

@=@, rsin@= Rsin@’ (4)
R* = r?+2%2—2Arcos@, (5a)
r*= R*+21*+2AR cos@’. (5b)

The relation between the O-xyz and the O-XYZ

systems is very similar to the one between the A-x'y’
z’ and the A-X'Y’'Z’ systems.
The quantization axis in the representation of
Yim(68', ¢’) in eq. (1) is chosen to be the z’-axis in the
A-x"y’'z’ system. Here we change the quantization
axis to the Z’-axis in the A-X’ Y’ Z’ system. Then, as
the basis set for the angular part of the wave function,
the spherical harmonics Y (@', @’) in the 4-X" Y’
Z' system can be taken. Therefore, ¥,,(6', ¢’) can
be represented by the linear combination of
Y1 (@', @) in the following way [3],

Yinl0, $)= 5 Fiul@ 0IRDaB)" ®)
R(af) = <Im|exp(—ial,)exp(—iBJ,)|Im"> = exp(—iam)r i (B), )
ri(8) = <Umlexp(—igJ,)| im">

- , STFI = E T =10 sarememtt -mem

=2V G me D= - —mr N 5 T ®

where R\ (ap) is the rotation matrix, and J, and J; are the y and z components of the angular momentum
operator, respectively, and the summation with respect to ¢ is carried out under the non-negative for all
factorials and & = cos(§/2) and 5 = sin(8/2). The explicit forms of the matrices r'?(g) for / = 0, 1, 2, 3 and
4 are given in Appendix A. Using eq. (6), eq. (1) can be written as follows,

¥(R) = éf é_x anRyn(af)* Q1 (R)Y 1,0, D). 9)

According to Léwdin [4], Q,(R)Y,,.(@’, @) in eq. (9) can be expanded using the spherical harmonics in the
O-XYZ system.
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o L
QURY 1@, 0) =3 3 [lulr. DYiu(O. D),

with

(10)

S lwnlr, 1) :fQ,.(R} Y1 (@, )Y (O, @)* sin @d Od O. (11)

For the integrations in eq. (11), we must use egs. (4) and (5). Using @’ =
(-integral in eq. (11), we easily see that f{2.,,(r, 1) is not zero only for m" = M, and we can put f

(7, 1)8uy- Then, egs. (10) and (11) become to

@ and eq. (2) and performing the
iﬁ-u(f, A)=

QIR 1,0, 0) = 2 flalr, )Y 1l D), (12)
i, ) = ki, kL,f 0/ (R)P,* (cos ©')P,* (cos @) sin © d O, (13a)
_E_Lekf —A? rP4+A2—R
Sl ar R @uP ()P (FHT), (13b)
where fi)(r, 1) = £ (r, 1) and || = min(}, L)(= A). When | g | < A is not satisfied, f{)(r, 1) =
Using eq. (12), eq. (9) becomes to
!
v(R)= 3 2 a;mR'“(aﬁ)‘E Sin(r, )Y (O, D). (14)

Here we change again the quantization axis to the z-axis in the O-xyz system. Then, Y,,.(6, @) can be
expanded using the spherical harmonics in the O-xyz system, which is similar to eq. (6).

L
Yinl®. @) = 2 Yuul6, $IRYP).
Eqg. (15) is inserted to eq. (14), then we obtain

Vr—A) =3 3 Fidr, DYud6, ¢),
L=0 M=—L

Ftﬁf(r 4‘.)— é 2 a!-mexp(;(m M)a’)}"”(ﬁ)

This is the final result for the expansion of y(r— 4).

3. Examples of expansions

In this section, we give the examples of the
expansions for the wave functions ¢+(r— A) with the
s and p symmetries.

1) e(r—23)

The wave function with the s-symmetry is assumed

to be Ys(r—A) = Qu(R) Yyo(8’, ¢'), in which R, &’

FrR 542 A

(15)

(16)

i B) fin(r, ). )

and ¢’ are the polar coordinates in the A4-x"y’z’
system. We use ag,, = Jy and the matrices 7..(4) in
Appendix A in eq. (17). The coefficients of f{3(#, 1)
in F{%(r, 1) are tabulated for the states ¥, (8, ¢)
(= | LM >) until L = 4 in Appendix B.
2) Yonlr—2A4) (m =0, 1)

The wave functions with the p-symmetry are given
by Yum(r—A4) = Qi(R) Y (8, ¢') (m=0, 1),
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and therefore @, = 4, in eq. (17). The coefficients
of f(r, 1) (m =0, 1) in F},(r, 1) are tabulated
for the states | LM > until L = 4 in Appendix C.
3) Energy integrals

The energy integrals E,, introduced by Slater and
Koster[1] are given by the matrix element E,, =
CPu(r) | V(r)| go(r—A)>, in which ¥(r) has the
s-symmetry. When ¢,(r) and y,(r—A) are the
cubic harmonics for the s and p states, E,, are easily
calculated using Appendices B and C. The results are

in agreement with the ones by Slater and Koster [1, 5].

4. Summary

It has been considered that the atomic wavefunc-
tion centered at a different site from the origin is
expanded using the spherical harmonics having the
The general formula for the
expansion is given, and the expanded forms until
L = 4 for the s and p wavefunctions are tabulated.

center at the origin.

Appendix A : Rotation matrices r “(g) for J =0, 1,2, 3 and 4

Using the relations for »“(8) given by ri(8) = rith(—p) = (=14

_ul(B) [3], the matrix

elements which are not shown for the cases of J = 3, 4 can be easily calculated from the given ones.

c=cosf:s5=sing

0 rop) =1
1) raw(B) 2) ra(B)
M’ M’
1 0 -1 2 1 0 = =
M M
1| (1+e)/2 —=VIs/2 (1—¢)/2 2| (1+c)/4 —(14¢)s/2 JBs%/4 —(1—¢)s/2 (1—c)/4
0| VIs/2 5 —J2s/2 L{(1+e)s/2 —(1+e)1—2¢)/2 —/Bes/2 (1—e)(14+2e)/2 —(1—c)s/2
—1|(l=e)2 /2 (1+e)/2 0| J6s*/4 JBes/2 —(1=3¢?)/2 —6es/2 VEs?/4
—1{(1-0)s/2 (1—e)1+20)/2 JBes/2 —(1+e)1—2¢)/2 —(1+¢)s/2
—2|(1—¢)*/a (1—-¢)s/2 JBs?/4 (1+¢)s/2 (1+c)y/4
3) ria(®
M
3 2 1 0
M
3| (1+ep/8
2| JB(1+c)*s/8 —(1+¢)(2—3c)/4
| T3(1+e)s?/8  —JTO(1+c)(1—3c)s/8  —(1+ec)1+10c—15¢%)/8
ol /34 J30cs?/4 f3(5¢*—1)s/4 (S¢t—3)c/2
— 1 |JT3(1—¢)s?/8  JTO(1—c)1+3e)s/8  —(1—c)(1—10c—15¢%)/8
—2| JB(1—c)s/8 (1—c)*(2+3c)/4
-3 (1—ep/8
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4| (1+e)/16
3| YI(1+c)*s/8
2| JI(1+e)s?/8
1| JTa(1+c)s*/8
0| J/T0s‘/16

= 1| JTa(1—c)s*/8
JI(1—c)s?/8
V3(1—c)'s/8

(1—¢)'/16

35¢s%/4
JT(1—e)(1+4c)s?/8
JTa(1—c)*(1+2¢)s/8
(1—c)*(3+4c)/8

—(1+¢)(3—4c)/8
—JTa(1+c)*(1—2¢)s/8
—JT(1+e)(1—4c)s*/8 —J3(1+e)(1+Tc—14¢%)s/8 (1+e)(3—6c—21¢*+28¢%)/8
JT0(7e1—1)52/8
—¥2(1—e)(1—Tec—14c%)s/8
(1—eP(1+7c+7c%)/4

(I+eP(l—=Te+Tc?)/4

Appendix B : Expansion of the s-wavefunction ,(r— A).
The coefficients of £{%(r, 1) in F{%(r, 1) are shown for the states ¥, (8, ¢) (= |LM >). (L m, n) = (sin 8
cos a, sin g sina, cos 8): Xy = I+im: fi0 = fi5(r, 1)

J3(7e2—3)es/4

=(1=e)(3+6c—21c"—28¢%)/8

(35c*—30c7+3)/8

*: (r_A)
L=0 0>
Joo 1
L=1] 1> 0> |=1>
feo —2X_/2 n SIX./2
L=2 12> 1> o> |=1> |-2>
Sfao VBX_%/4 —J6nX_/2 (3n*—1)/2 Jénx, /2 VX, /4
L=3 13> 12> |1> o> |=1>
Joo —5X.3/4 J30nx_2/4 —J/5(5n—1)X_/4 n(5n*—3)/2 J3(5nt—1)X, /4
|—2> [-3>
Jio J30nX,2/4 3X,%/4
L=4 4> |3> 2> 1> o>
s JT0X_4/16 —JTBnX_2/4 JI0(Tn2—=1)X.2/8  —/3n(Tn*—3)X_/4  (35n*—30n*+3)/8
|[—1> |=2> |=3> |—4>
Joo Sn(Inr=3)X. /4 JTO(In*—1)X,%/8 J35nX,*/4 JT0X,4/16
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Appendix C: Expansions of the p-wavefunctions y,,(r—2) (m = 0, +1).
The coefficients of f{3(r, 1) and f)(r, 1) in Fi}}(r, 1) are shown for the states ¥ ,,(8, ¢) (= |LM >).
(L m n)=(sinB cosa, sinf@sina,cos 8): Xo =Ixim: [, = filr, 1)

1) ‘*p}.(r‘_t{)
L=0 0>
fu —JIXJz
L=1 1> 0> |—1>
Jie (1—n%/2 —J2nX,/2 —X.* /2
fi (1+n%)/2 VZnk, /2 X2
L=2 12> [1> 0> |=1> [=2>
fuo —J3(1—n?)X_/4 J3n(l—n?)/2 V2(1—3nY)X,/4 —J3nX,2/2 -3X.%/4
Ja —(1+n*)X_/2 n® Jfen*x, /2 nX,? X2
L=3 13> |2> |1> o> |=1>
S JIO(1=n?)X_2/8  —/T3n(l—n))X_/4 J8(5n*—1)(1—n"/8 —In(5n*=3)X,/4 —/8(5n*=1)X,*/8
Ja JI3(1+n)X.2/8  —/T0n(1+3n*)X_/8 —(1+6n*—15n*)/8  JIn(5n*—1)X,/4 —(1—15n%)X,/8
|—2> |-3>
5 —/T3nX,2/4 —JTOX,*/8
fa 3/10nX,/8 JI3X.4/8
L=4 4> [3> 12> 1> 0>
S =B3(1—n)X 316 JTOn(1—n?)X.2/8  =[3(In=11—n")X_/8 JTOn(1—n*)(Tn2—3)/8 —/3(35n'—30n"+3)X./16
A —JTa(14+n")X_3/8  JIn(1+2n)X_%/4 J2(1+n*—14n")X_/8 n*(Tn*—5)/2 S (Tn?—3)X, /4
|=1> |=2> —-3> | —4>
fo  —=/T0n(In*=3)X,2/8 —/5(1n*—1)X,*/8 —JT0nXx,*/8 —y35X,5/16
5 —n(3—14n")X,2/4 —J2(1—14n%)X,3/8 JInX.*/2 J1aXx.5/8
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2) yYpo(r—24)
L=0 o>
Joo n
L=1 [1> 0> |—1>
1 ~JZnXx_/2 n? 2nX./2
fa J2nx_/2 1—n* —2nX./2
L=2 2> [1> o> -1> |—2>
s J6nX /4 —Jen*X_/2 —n(1—3n%/2 Jon*x, /2 JénXx.*/4
¥ —J3nX 22 ~J3(1-2n)X_/2 JAn(l—n)/2 VI(1-2n0)X, /2 —JInX,2/2
L=3 13> 2> 1> 0> |=1>
i —J/3nX_3/4 JI0n*X_%/4 —~An(sn*—1)X_/4 n*(5n*—3)/2 Sn(sn*—1)X, /4
B J30nX_3/8 B=3n0X2/4  —/In(11—1507)X_/8 J&(1—n®)(5n*—1)/4 JIn(11—15n%)X, /8
|—2> |=3>
S YI0n*X.*/4 J3nXx.2/4
S V3(1-3n%)X,2/4 ~/30nX,*/8
L=4 [4> 13> [2> 1> 0>
Sio JTonX_4/16 —J33n2X_3/4 JIOn(Tn2—1)X_2/8 —/Sn*(Tn*—3)X_/4 n(35n*—30n*+3)/8
Ja —JInXx_*/4 —JTa(1—4n®)X_*/8  n(4—Tn®)X_2/2  J33-21m+28n")X_/8 JTOn(1—n?)(Tn*—3)/4
|-1> |—2> |-3> |—4>
Joo Sn(In*=3)X./4  JTOn(Tn*~=1)X,2/8 V35nX, /4 JT0nX,4/16
fo  —AO-Dm+BmX./8  a(d—Tn)X.3/2 JTa(1—4n?)X,2/8 ~JTnX,*/4
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3) Ypa(r—24)
L=0 o>
Joo V2X_/2
L=1 1> 0> |=1>
fiu -X/2 JInX_[2 (1—n%)/2
¥ X2 —Jinx_/2 (1+n%)/2
o) 12> |1> 0> |=1> |—2>
Jos X3/ —3nx_2/2 —2(1-3n*)X_/4 V3n(1—n%)/2 V31— n) X, /4
L -X32 nx.? —6n2x_/2 n (1+n%)X, /2
Li=3 13> 12> 1> 0> |=1>
g —J/10X_4/8 JI3nX_3/4 —JB6(5m*—1)X_3/8  In(5m*—3)X_/4  JB(5n'—1)(1—n?)/8
fa JISX_4/8 —3/10nX_3/8 —(1=15a)X_2/8  —3n(5n*—1X_/4 —(1+6n'—15n*)/8
|—2> |=3>
S T5n(1—n*) X, /4 JI0(1 = n?) X,2/8
B JOn(14+3n0)X. /8  JI5(1+n")X.2/8
L=4 4> 3> |2> 1> o>
Jao J35X_/16 —/T0nX_*/8 SInt—1)X_3/8  —JT0n(Tn*=3)X_3/8 JI35n*—30n+3)X_/16
o —JTAX_%/8 JTnx /2 V(1 —14n0)X_2/8  —n(3—14n*)X 2/4 —[3n*(Tn*—3)X_/4
|=1> |—2> |=3> |—4>
fio  On(1—n®)(Tn*=3)/8 ST —1)(1-m)X./8  JTOn(1—n®)X.2/8  [35(1—n?)X.2/16
fu n*(Tn*—5)/2 =21+ =14n9X,/8  JTn(1+2n%)X,%/4 JTa(1+n?) X,3/8
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