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1. Introduction

The recent inclination of high heat flux on electronic equipment has requested the precise
technique for cooling of it, especially of the IC chips which are in general enveloped by packages.
Therefore, it is very important to know the heat transfer around the small blocks situated on the
plane wall. There are some works for cooling of the IC packages [1-5]. Most of them studied
experimentally with the sublimination method of the naphthalene under the turbulent flow
conditions, however. It is well known that the result of heat transfer by the sublimination method
is equivalent to that obtained under the constant temperature condition. However, the model
should be treated as the constant heat flux in view of the practical cooling of the IC packages.
Moreover, the experimental block is too large to simulate the current high heat flux IC package.
However, it is very difficult to make the block more smaller, and the measurements of the heat
transfer around the block are not accurately conducted.

Yanagida et al. [4] have carried out to estimate the heat transfer of rectangular packages
developed along one wall of the flat rectangular duct in low Reynolds number (say, Re=100-300),
by the sublimination of naphthalene technique. They also demonstrated the predicted formula of
heat transfer. However, their formula is constracted from the assumptions that the heat transfer
around the plane wall of the packages is identical with that in the uniform flow field, although
the packages are situated on the plane wall.

On the other hand, there have been some studies for the improvement of heat transfer of the
duct by roughened surface with small square ribs (6], [8]. However, in most cases the average
heat transfer of the duct has been treated only. Therefore, details of heat transfer from the ribs
themselves have not been clarified. Furthermore, the flows in the duct have been treated as
tubulent ones and the Reynolds numbers handled have not always been small in the previous
studies [6], [8].

Most previous works of the cooling for IC packages have been conducted, considering them
as three-dimensional. However, the package height has been made small more and more, and the
package shapes are not always square as

treated in previous works [1-3], [5], but the | w T T < 1
rectangular types are regular more. In the }—v' l
case of rectangular shapes, it may be possible iy L__x le— P —= H |
that the modeling of package is done as | . B w [
two-dimensional when the streamwise pitch | N1 L§7 N2 A N3 Jo NALJ
between blocks is small. 1= ~ | =g+

As a first step, in this paper, numerical Fig. 1 Schematic diagram and coordinate system
* Former student with symbol
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analyses were conducted concerning to heat transfer of the small square ribs mounted along one
wall of the flat parallel and the adiabatic walls as shown in figure 1 for the purpose of obtaining
the fundamental informations for cooling technique of the recent IC package, under the following
conditions: the constant heat flux, the low Reynolds number (Re=35—-210) and the laminar flow.

Nomenclature

H height of flow passage, Fig.1

h rib height, Fig.1

g gap between ribs, Fig.1

N rib number

Nu ah/ A =Nusselt number

Nu’' @’h/ 2 =Nusselt number

1 rib wide, Fig.1

p rib pitch

Pr  Prandtl number

q heat flux

Re Reynolds number=uch/ v

temperature

velocity component in x-direction

velocity component in y-direction
downstream distance

distance from the wall

dimensionless distance of stream wide=x/h
dimensionless distance from the wall=y/h
heat transfer coefficient

heat transfer coefficient defined by the condition that the objective rib of all the ribs is only
heated

residue defined in equation (5)
dimensionless temperature= (T-T,)/qh

R RS X < g

thermal conductivity
kinematic viscosity
stream function
vorticity

(ST ISR N

subscripts
Nw  distance between the node of the wall and the node next to the wall
o entrance
w wall
2. Modelled System and Governing Equation
The modelled system employed is shown schematically with the coordinate system in Fig.1.

The steady heat transfer in this system with four ribs is treated two-dimensionally, considering
the most popular IC package (DIL-P type with 16 pins) [4]. The rib height is kept constant at
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3.5mn and the rib wide ratio 1/h at 1.71. Reynolds number based on h and u,, which is the entrance
flow velocity of air, ranged from 35 to 210, considering the experimental results that the instability
of the recirculating flow occurs at the Reynolds number about Re=250—300 obtained by Kang and
Chang [9]. The nondimensional pitch p/l was varied from 1.33 to 6.67 (that is, g/1=0.33-5.67).
Furthermore, the ratio of duct height H to the rib height h was 5.71. The heat transfer from rib
was investigated under the constant heat flux condition.

In the previous data of heat transfer around the block-like electric components which are
arranged in in-line [4, 5], we can find that the average Nusselt number of the blocks is in highest
at the first row and decrease with increasing downstream distance and is seen to be constant for
the second or the third row [4, 5]. Therefore the modelled system in this study is constructed by
four ribs as shown in figure 1.

2 - 1 Differential Equations
In the case of two-dimensional laminar, incompressible and steady state flow, the governing
equations of the momentum, and the energy are described following equations with the vorticity
equation in Cartesian:
momentum equation,

00 0¥ 09O 0¥ _ 1 o2
(ax Y  aY 98X  Re v“) ()

10 1 .

energy equation, 2

06 0¥ 06 ¥ __ 1

9X "9Y oy oY ®ep, Ve @
vorticity equation,

vz =—Q (3) ~~~~~

2 « 2 Boundary Conditions and Numerical
Procedures

Re =210

The approaching length to the first rib x; 0 A B C D
shown in Fig.1 is kept constant at 14.3h for all
analyses in the case of four ribs. The boundary Fig. 2 Local Nusselt Number distributions of
conditions of the entrance of duct are ¥ =Y, single rib with x,/h for Re=210
Q =0, 6=0 (that is, T,=0). The outlet boundary
conditions of the channel are defined as 6 ' | [ ‘
following: gradients of ¥, Q and © along the g
stream direction are negligible (i.e. @ /9 X=0). 5 | 4
On the solid boundary, the no-slip condition is Re =210
applied for the flow field of the system. The 4 —
condition of the vorticity of the wall is given
as [10], 3t ]

Qw =~ 3(%yw—¥w)/ nxe® — 0.5 Oy (4) T T
The temperature condition of rib was assumed 0 : I ‘ .
. 0 10 20 30 40 50

as constant heat flux, that is, Oy =Oyw+nyw, x/h
when the rib was heated. Other thermal
boundary condition of the walls except the Fig. 3 Average Nusselt Number of all over the
surface of the ribs may be written 86/0Y=0. surface of single rib with x,/h for
Where, subscript NW denotes the neighbouring Re=210
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Fig. 4 Average Nusselt number results of A—B, Fig. 5 Variation of reattachment length
B—C, C—D and A—D with Re from rib with Re

node and nyy represents the normal distance between the node of the wall and the node next to the
wall.

The governing equations with the boundary conditions are solved using the finite difference
scheme described in reference [10]. In the scheme, the upwind method is applied to the convective
term and the central difference is used to the diffusion one. Non-uniform grid nodes (74X18) are
chosen, and the grids near the wall and the corner are fine. The grid size ranges from AX/H
(or AY/H)=0.025 to 0.1. The Gauss-Siedel iteration method has been applied for obtaing
a convergence of ¥, Q and ©. The convergence criterion of these variables is defined as

e= (0"~ 0"") /0" |max (5)
where, n is the nth iteration. The residual ¢ is 107 for ¥, Q and is 10™° for €. An averaging
method has been used in oder to obtain the variables of the corners of rib.

3. Results and Discussion

The computational results of the velocity distribution for laminar flow in the inlet section of
the straight channel were obtained in order to compare with the exact solution of it. It was
confirmed that there were good agreements with each other. Before describing the results
obtained from four ribs, it may be necessary to show the behaviors of heat transfer in the case of
a single rib, as a first step. Figure 2 shows the variations of local Nusselt number Nu; around
the rib for the Reynolds number Re=210. In the figure, the symbols A, B, C and D indicate the
corner of rib, respectively, and xi1/h denotes the dimensionless distance from the inlet of the duct
to the front face A—B of the rib. It can be seen that Nu; of the corner B is very large and
independent on xi/h. This is resulted from the abrupt variations of the velocity around that
corner. Nu; of the A—B wall in the case of x1/h=5.7 is larger about 10—20 percent than that for
x1/h=28.6. It is considered that the velocity of oncoming flow to the A—-B wall for x;/h=5.7 is
larger than that for x;/h=28.6. That is, the boundary layer thickness (which is the thickness when
the rib does not exist on the wall of channel) at the point of x1/h=5.7 is almost identical to the
height of rib, while the thickness for x;/h=28.6 is about 1.7Th. However, the undisturbed maximum
velocity in the parallel channel increases with increasing of the distance from the entrance, in the
inlet region of the channel. Therefore, Nu; of the B—C wall for x1/h=28.6 shown by the dotted line
is almost larger than that for x;/h=5.7, because the undisturbed maximum flow velocity
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Fig. 6 Local Nocal number destributions of the
third rib with g/1 for Re=210
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Fig. 7 Average Nusselt number results g/l
of A—B, B—C, C—D and A—D
with Re for N=3, g/1=0.33; Fig. 9 Variation of Nu’ with g/1 and Re for
O, Yanagida et al.l4l N3

mentioned above is accelerated about 10 percent than that of the entrance of the channel. It is
found that Nu; of the C—D surface is almost independent of x;/h. It has been also confirmed that
the distributions of Nu; do not vary with x;/h in the range x1/h=28.6—48.6.

Average Nusselt number Nu around the entire surface of the rib (that is, A—-B—C-D) is
described in Fig.3, for Re=210 with x1/h. It can be seen that the result of Nu changes little by
x1/h, although it decrease somewhat with increasing of x;/h. Figure 4 indicates the dependency of
Nusselt number for Reynolds number. In the figure, the symbol A-D (shortening of A—B—C-D)
indicates the entire surface of rib. Nu of the B—C wall show the highest value and Nu of the C—D
wall is considerably smaller than that of other walls. It can be seen that the relations between
Nu and Re are not always linear except the result of C—D wall.

It is important to know the reattachment length of the shear layer from the rib to the duct
wall in relation to the design of rib arrangement in practice [4]. Figure 5 demonstrates the length
of reattachment point la/h with Reynolds number. In the range of Re=35-210, la/h is linearly
increasing with Re. However, the inclination of la/h for Re in case of x1/h=5.7 is somewhat
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larger than that of x3/h=28.6. The dotted line is the result shown by Ota et al.[11], which is the
reattachment length of shear layer from the leading edge of the blunt flat plate in the uniform flow
field. Their definition of the Reynolds number is based on the half thickness of the plate. The
dependency of £a/h for Re of that case is stronger than the results treated herein.

Figure 6 describes the typical local Nusselt number distributions around the third rib
(N=3 or N3) of four ribs with Re=210 for the dimensionless gap g/1. The results shown by the
dotted line indicate that the third rib is only heated, and the results by the solid line do that all
the ribs are uniformly heated. That is, Nu;’ means the result obtained under the condition that
the objective rib is only heated.

In previous studies concerning to the cooling of the block-like electronic packages [4,5], the
heat transfer rates around these are seen to be constant for the second or the third row when the
objective package is only heated. Therefore, in this report the results of the third rib are mainly
discussed, considering also the effects of downstream rib behind N3. In the figure, it is seen that
the distribution of Nu;y’ for g/1=5.67 is similar to that of the single rib as shown in Fig.2. The
maximum of Nui’ at the corner B does not appear when g/1 is very small such as 0.33 and the
value of Nuy’ for g/1=0.33 is considerably lower than that of other gaps, especially in the upstream
surface of the rib. On the other hand, the results of Nu; shown by the solid lines are small in
general due to the heating of other ribs (especially of the first and the second ribs), comparing
with these of Nuy'.

Average Nusselt numbers for g/1=0.33 are shown in Fig.7 with Reynolds number. The
symbols and the lines in the figure are identical with these of Figs.4 and 6. It is found that these
average Nusselt numbers of A-B, B-C, C-D and A-D increase linearly with increasing of
Reynolds number and the tendency of them is different from the case of single rib shown in Fig.4.
The dependency of these Nu, Nu’ for Re is strong in the upper surface of the rib (B—C), where the
heat transfer rate is considerably larger than these of A—B and C-D surfaces. Therefore, the
behaviors of Nu' and Nu around the entire rib are influenced by these of B-C surfaces.

In the figure, the symbol of © shows the result obtained from the three-dimensional block
by Yanagida et al.[4]. Thier result have been obtained as following. The dimensions of the block
are for H=20mm, h=3.5m, 1=6.3m, g=3.7mm and the length perpendicular to 1 is about 5.5h. The
heating condition is equivalent to constant temperature since the naphthalene sublimination
method has been used. Furthermore, their block arrangement is in-line. The result shown in the
figure corresponds to Nu’ of A—D. Their experimental result is higher about 60 percent than that
of the present study. This difference may be explained by the facts that the heat transfer of the
side walls of block (perpendicular to the stream direction) is not negligible and that increase of
heat transfer is caused by the three-dimensional flow around the block, especially downstream
surface of the rib. However, it may be considered that the influence by the flow difference
decreases when the gap between ribs is small.

Figure 8 shows the variations of average Nusselt number of A—D for each rib with g/l when
the Reynolds number is equal to 35. Nu and Nu’ of N1 (which indicates the first rib) are almost
identical with Nu of the single rib as shown in Fig.4 for g/121.67. It can be seen that the results
for the second rib N2 decrease affected by N1. That is, N2 is buried in the separated flow region
(in which, the flow is very stagnant) of N1. These trends have been confirmed in the high
Reynolds number (Re~10%) when the bluff bodies are mounted on the plane wall, although the
system treated is somewhat differenct from the present study [12]. Furthermore, the thermal
wake from N1 cause to decrease the value of Nu of N2, when all the ribs are heated and g/l is
small. Nu value of N2 for g/1=0.33 is about 0.38 times of that of N1 for example. Nu decreases in
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general with increasing of N (except the Nu for N4). It has been found that thus tendencies are
independent of Reynolds number.

Nu’ for N3, N4 (the fourth rib) change little by N (except the case Nu’ of N4 for g/1=0.33).
These trends can be seen in the previous studies [4,5]. The results of N4 are somewhat larger than
these of N3 when g/l is small, although N4 is located downstream of N3. It may be considered
that the heat transfer of the rear face of N4 increases because the flow downstream of N4 is not
stagnant caused by no presencee of the ribs behind N4. Moreover, it is obvious that the heat
transfer increases with increasing of g/l1, but the increasing ratio decreases with increasing of g/l
and saturates for g/1>>3.0. When Re takes large value, the values of Nu’ change little for g/123.0
as shown in Fig.9 (in which Nu’ with N3 are indicated against g/1). In the range g/1=0.33~3.0,
however Nu’ increase linearly with increasing of g/l independent of Re and there exists such
a relation Nu’' o< (g/1)°-237 Furthermore, it can be found that Nu’ ocRe’-32in the ranges of
g/1=0.33~5.67 and Re=35~210. Therefore, Nu' of N3 are written as

Nu’ = 0.448 (g/1)%2%", R.%3!12 (6)
for the range g/1=0.33~3.0,
Nu’ = 0.581R.-*'2 (7

for the range 3.0<g/1<6.0.

These results shown in equations (6), (7) may be considered as those for the ribs
downstream of N3 as suggested in Fig. 8.

Attention will now be focused on the relation between the results of Nu’ and those of Nu.
It is more convenient to use Nu than Nu’ owing to design the thermal equipments in practice. The
dimensionless temperature of oncoming flow towards the rib is designated as &ns hereafter, when
all the ribs are heated. ©1f which denotes the temperature for N1 is equal to 8,. Ony for the Nth
rib increases of course with increasing N. If the differences between Osf and €z are defined by
AB3-2,03f is described as

B37/=62f+NB3-2 (8)
Furthermore, if the similar definition for AB4-3 is made,84f is given as
64f=03f+NBs-3 (9)

When the heat flux from each ribs is equal, the temperature difference =~ AG(=6Onf—ON-1,f) may be
considered equal. Then, it can be written that A 83-2=AB4-3=A 6. Therefore, O3f, Osf are
described as

Bsf= 02+ N6 (10)
Baf= O2f+ 26
that is, ONf= @27+ (N—2)A6 (an
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where, N=2.

On the other hand, the average Nusselt number obtained by using ©nf under the condition
that all the ribs are heated may be equal to Nuy’ calculated from the condition that only the
objective rib is heated [13]. Therefore, there exists following relation between Nuy and Nuy’

Nuy = 1/(1/Nu'’y + 6ny) 12)
where, subscript N denotes the Nth of rib.
From this, if Onf is obtained, Nu will be calculated from equation (6) or (7) for example.

In this study, it is most reasonable that A® shown in equation (11) is replaced by the

temperature difference A@3-2(=03f-62f). On the other hand, 2y is given as

635 =1/Nuy —1/Nu’, 3)
From the results of Nuz and Nuz’, @2 are obtained and demonstrated in Figs. 10 and 11 as the
functions of g/l and Re. As a result, ©2f is given as

O2f=1.01Re™-2% (g/1)0-53 (14)
within +5 percent error band.
B3 is also obtained by the similar manner as @25, A B3-2(=035r—O2s) are described in Figs.
12, 13, and presented as

AB3-2 = 0.737 Re™0-366 (g/1)70-40 (15)
with an extreme deviation of 5 percent. Therefore, Ony yields

6nf=1.01Re 296 (g/1)™0-53 + 0. 737 (N—2) Re~"-366 (g/1)~0-40 (6

where, 2=N<4.
Nuy can be obtained from equations (12) and (16) with Nuy’ shown by equations (6) and (7).

In order to know the behaviors of ©ny, typical distributions of the dimensionless temperature
in the center sections between the ribs are shown for g/1=1.67 in figure 14(a). The solid lines
present the temperature distributions at the section A—A (center section between N1 and N2) and
the dotted lines at the section B—B (center section between N2 and N3). The distributions for
Re=35 show that the temperature field diffuses towards the main flow at about Y=2.5~3.5, while
the case of Re=210 at about Y=2.0. Moreover, when Re is large the temperature decreases
abruptly at about Y_>1.0. In the figure, the positions of @nsf are shown by the horizontal bar
symbol (—). They are located in the neighborhoods of Y=1.3 which is larger than the levels of the
dividing stream line, which is situated at about Y=1.0 for g/1=1.67 independent of Reynolds
number treated herein.

The effect of g/l for temperature distributions is presented in Fig.14(b) for Re=210. It is
obvious that € for g/1=0.33 is very large in the range Y<(1.2, and & decreases with increasing g/1.
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The locations of ONf are from Y=1.1 to 1.4, and they approach to the direction of Y=0, when g/l
and Re are small. Furthermore, it can be recognized that Ons at the section B—B generally are
located at the smaller Y than the case at the A—A section.

4. Concluding Remarks

Heat transfer of the small square ribs mounted on one side of the parallel flat walls which
are adiabatic has been calculated numerically in the laminar flow field. The local and average
Nusselt numbers around ribs have been obtained varing the gap between ribs and Reynolds’
number under the constant heat flux. The results of average Nusselt number Nu’ which are
obtained by heating only the objective rib show that the behaviors of the first rib are identical with
these of the single rib except the case when the gaps are very small, and that the average Nusselt
numbers Nu’ of the ribs behind the first rib are constant values. Nu’ of the third rib are evaluated
by the equation (6) or (7). When all the ribs are heated, the average Nusselt numbers Nu of the
first rib are similar to the behaviors of Nu’. Nu of the ribs behind the first rib decrease especially
when the gaps between ribs are small. The relations between Nu and Nu’ for the Nth rib are
obtained by the equation (12), by considering the characteristic temperature as described in
equation (16).
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