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1. Introduction

At the beginning, the results in paper I [1] are summarized briefly (see also ref. [4]). The
simple anisotropic band model has the symmetrical Fermi surface around the k;—axis. The
situation can be divided into two cases, case A and case B. In case A, the Fermi surface makes
the open orbit for the k,—direction, and there is no Fermi surface perpendicular to its direction.
In case B, the Fermi surface has sections perpendicular to the k,—axis. The vector connecting
two interacting f spins is denoted by R, =(R.,0,R;), in which R,=2r (n+t)/Q, n is an integer,
(1 t<f and 27/Q is the lattice spacing for the z —direction, and R, takes a continuous value.
The RKKY interactions J(Ry:t) are represented by J(R.) for R;.=0 and by J(R.) for R, =0.
The J(R;) and J(R,) in case B show the usual oscillatory behavior because the Fermi surface
has sections perpendicular to Ry The J(R.) in case A shows the oscillatory character for the
same reason, but J(R;) show the damping with constant sign since there is no Fermi surface
perpendicular to R »..Thus, in case A, J(R,) and J(R.) have the different analytic structures.
How are these different structures connected for the middle direction of Ry ? Furthermore, the
damping of J(R;) is the exponential type for ¢=0 but the power type proportional to R;% for
$#0. Tt is expected that introduction of R. may give the different effect on J(R;) according to
t=0 and t#0.

For the reason’mentioned above, the analytic structure of J(R,,R;) in case A will be
considered in this paper, in which J(R.,R;) is the J(Rp:t) with non—zero R, and R, and its
calculations will be carried out for the constant matrix element case because they were limited to
its case in I. J(R.,R;) is given by eq. (2) in I, that is,

J(RLR)=1s 3 § Jae faer LOUIEN 1 ey, o), w
Lt (6)=[dk exp(iReke)Buke (1) Jo(Ry Ne=e,(k2)), @

where same notations as in I are used, and the integral region with respect to k, is limited to the
first zone and is bound by €é=¢,(k,). Since the constant matrix element case is noted and only
intraband scattering for v=v’=1 is considered, we can put By, ()=1 in eq. (2)

2. Evaluation of I, (¢)

We will approximately calculate I;;(¢) (¥=1) here on a basis of the stationary phase
method(2]. I (¢) is given by

L. (©)=[dk, cosR; ks Jo(R,Ne—1(kz)). @)
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The large contributions to this come from vicinities of the belly(l) and neck(l) on the Fermi
surface, in which (1) means the first zone.

2.1 Contribution from belly (1)
The band energy ¢;(k,) is expanded up to the second order around belly(l) at k,=0and it
is given by eq.(4). Then I;.(¢) is given by eq.(5).

€i(kz)=€o+ki/mq  (€0=€1(0), mo=2/€"(0)), @)

k
I;,(e):f_:o dk, cosR,k; Jo (Rp'\/koz—k,Z), (5)

where k&=mq(¢é—¢&) and R p=Ri/Nmg. This integral can be carried out by use of the integral
table for the Bessel functions[3] and we get

sinkoVRE+ R} ®)

=2
I,(¢) RI+ RS

2.2 Contribution from neck (1)
The band energy ¢ (k) is expanded up to the second order around neck(l) at £,=Q/2 and

its energy band and [;.(¢) are given by

(k)= 61 —(ke-Q@2)/my (6= €@2), mi=2/1 6" @2)]), m
Q/2
1 (€)=20(e=e) [ " dk, cosRake Jo(RsN KR

Q/2
+20(E,—5)J;, dk; cosRzkz Jo (Rs Nx? —k(?), ®)
1

where x=Q/2—k;, ki=m,(c—¢,), ki?=my(,—€), R;=R,/VYm, and @(x)is the step function. The
variable change from k; to x is made, and next the integral regions with respects to x are
extended into infinity (Q/2->°). Then we get

I11(€)=2c08(R, ¥/2)(8 (¢ =), dz cosR, z Jo(RonkT+?)

Table I. Functional form of I:(€ ) caused from neck (1)

R, > R R: < R;
e < ¢ £ >¢ e < ¢ > ¢,

» exp[—ki NVRZ-RZ] 2(=1)" cosky A/RZ-R?

. sink;/RZ-R?

—2(-1 -
=0 VR N O = JRIRT
(10a) (10b) (11a) (11b)
, cosk{ NRZ—R2Z |, yn _Jo(Rsk1) o
t=1/2 2(-D m 2(-1 m 0 2(-1) I(Rs»Rz,e)
(12a) (12b) (132) (13b)

I(Rs Rz¢ )W’iﬁf—T? -3 (~1)" sin2ed Jza (Rs ki) ($=sin” (Re/Rs))
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+0(e,—e)J;l,dx cosRzx Jo (RsAx*—k/'*)]
+25in(R2@/2)[ 0 (e —e)f dx sinR,z Jo(RkT+2D)

+0(e|—e)J:,°dx sinR,z Jo (RsN2%—£/%)]. ®

For the integrals containing Bessel functions, see ref.[3] and Appendix. Because of R,Q/2=w
(n+t), cos(R,;@/2)=0 for t=1/2 and sin(R,@/2)=0 for t=0. Hereafter, we notice both cases of t=0
and t=1/2. For theset, the results of integrations in eq.(9) are summarized in Table I.

3. Meaning of structures of I, ( ¢) and its

validities Rz kz

— 9,/2 '

As easily seen from eqs.(10)—(13) in Table I ::lN
I, the analytic structures of I,, (¢) caused from N’
neck(l) are distinguished by the inequalities of M
R:Z R for both cases of t. This can be related
togeometry of the equal energy surfaces in the e
following way. The band energy for the first ﬁ
band is given by k.%+€ (k;). When €(k,) is “
approximated by eq.(7), its equal energy surface u W
is given by e=¢,+k 2—x*/m, (x=k,~Q/2), in which >3 5
only surfaces in the first zone are noted, that is, T P s’ |
its zone can be denoted by —Q/2< z< 0 and k 1>0. /2
This shape is the hyperbola in the &, —x plane —_— RJ_,KL
and its asymptotic line is z=-/mk,. When
R:=R,//mi1(=Rs). the vector Rnt=(R,.R;) is Fig.1. The Fermi surface in case A is

perpendicular to the asymptotic line, in which shown. The representative poipts, tangential
planes and their normals on its surface are
- also indicated. The tangential lines at W
because the energy surfaces are symmetrical and N’ are parallel and have the common

around the z—axis. For the equal energy normal.

R,: can be taken as the two dimensional vector

surfaces with larger energy than ¢ (e>¢;),

there is no section on its surface perpendicular to Ry with R;>R;, and there is section
perpendicular to R, with R,<R; at vicinity of neck(1). However, for the surfaces of ¢ <é, the
situatuation is opposite. Thus the inequalities of R, 2 R; distinguishing the structures of | 1(€) are
equivalent to condition that the equal energy surfaces have sections perpendicular to R, or not. On
the other hand, for I,, (¢) caused from belly(1), the structure is simple as seen from eq.(6), and
I, (€) consists of the single term. The reason is that the equal energy surfaces are elliptic and have
sections perpendicular to R, with an arbitrary direction.

Next let us discuss validities of [ ;, (¢) since they were derived using the approximated band
energies expanded at belly(l) and neck(1). As easily seen from eq.(1), the large contribution to
J(R.,Rz) is caused from vicinity of €¢=¢'=¢;, that is, Fermi surface. For this reason, we show
the Fermi surface for case A in Fig.1. The curve PWUMN N denotes its surface. The M is inflection
point on its surface, and the line L" is the tangential one at M, and the line L is its normal, in which
really L’ is the plane not line because the Fermi surface is symmetrical around the & z—axis. The
R.~R. plane is divided into two regions by the line L, I and II. Perhaps, the approximated band
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energy given by eq.(7) can represent the part NM well. Therefore, eqs.(10) and (12) are valid in the
region I, and eq.(11) and (13) in the region II. On the other hand, let us assume that the part PU can
be well represented by the approximated band energy given by eq.(4) and the part UM cannot well,
in which the boundary point U is roughly marked in Fig.1. Eq.(6) is valid in the region Ila. We
summarize the valid equations of I, (¢) for each region immediately below.

I . eq(10) and eq.(12) (14a)

Ila . eq.(6).eq.(11) and eq.(13) (14b)

IIb : eq.(11) and eq.(13) (14c)
4. J(R,,R.)

In this section, we will consider J(R.,R;) in case A (&r>¢€;) caused from the intraband
scattering (v=v'=]). Its J(R.,R;) is denoted by J;,(Ri,R;).

4.1 Case of t=0
4.1.1 Region I
Eq.(10) is inserted into eq.(1). Because of I;, (¢ )=0 for € >¢,, we get

Ju(R ,R2)=0. (19

J(R.,R;) is caused from the interband scattering (v=I,v'=2) and indicates the exponential
damping since a electron flies the band gap in its scattering.

4.1.2 Region Ila
We insert egs.(6) and (11b) into eq.(1) and perform the energy integrals, and get as the
asymptotic form for large R (R=|R;|).

1
CquO COs@qy Ro Cm 19 COSqu| C(m.om])z RoR](R0+R,1)2 (qoz—qf )2
. + . + 1

InlReR)=" g RS 6 R 4 4(Rogo+R1g1)°
RogytRigy (1
X ROR](R0+RI)2 SIH{ 2 (quo'f'qu])}’ (16)

where Ro=(R1%+m, Rzz)% ,Ri=(R.%*-mR? )%, and gq and q, are the diameter of belly(1) and neck(1),
respectively (see Fig.1). Eq.(16) agrees with ones given by egs.(30),(31) and (38) in paper I, in
which note that the definitions of my and m, inI are different from those in this paper. The periods of
oscillations for the first and second terms in eq.(16) are qyR¢/R and ¢;R /R, respectively, when we
regard them as a function of R. The wave number goR, /2R is equal to the distance in the k. —k, space
from originto the tangential plane at the point near belly(1). For example, when Ry; is in the direction
of OWin Fig.1, it is equal to distance from origin to tangential plane at W. Similarly, (¢.R +QRz)/2R
is equal to distance from origin to tangential plane at a point near neck(l). However, because of
QR ,=2nn, we must note that cosq;R;=cos(q;R+QR ;) in eq.(16), in which ¢;R/2R is the distance
from center of neck(l) on the zone boundary (k,=Q/2) to its tangential plane. The period of
oscillation for the third term is the average of them. It can be concluded that each period is equal to
distance between two tangential planes of the Fermi surface perpendicular to R,;, in which they are
located opposite with respect to origin.

4.1.3 Region IIb
Although the accurate asymptotic form of Jy;(R. ,R ;) could not derived because of inaccuracy
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constant matrix element
J(R_‘,Rz)/co
[ 'l =1.o
- va VE] , 2k§Ry=2T(n+t) n=3,1=0.5

Fig.2. J(R1,R:) for t=1/2 are plotted as a function of Zk$R.. k} and E¥ are
radius of the Fermi sphere and the Fermi energy for V=0, in which V is
strength of the potential defined in paper I. 2/:}}2z and v—V/E° are the
parameters, and Co—CIc°4 and n—Q/2k° The solid and dashed lmes are the
numerically calculated results due to eq (11) in ref.[4], and the former should
be compared with eq.(17) and the latter with eq.(19). The results due to the
modified eq.(17) are indicated by O and A, in which the values of ¢, are
calculated using the two wave energy dispersion.

of eq.(6), it consists of three terms similar to eq.(16). But, each period should be modified. When
direction of Ry varies from T to L gradually (see Fig.1 for T and L), the two periods corresponding
to goRo/R and q,R;/R approach each other and finally agrees. For this reason, when Ry is in
direction of L, Jy(Ry,R.) vanishes since the first and second terms in eq.(16) cancel each other
because of opposite sign and there does not exist the scattering process giving the third term. This
result connects to one given by eq.(15). But really, because the small contribution from inflection
point M exists, it seems that there remains the higher order terms than one of R™®. Accurate
evaluation of its contribution is future problem.

4.2 Case of t=1/2
4.2.1 Region I

We perform the energy integrals by inserting eq.(12b) into eq.(1) and by changing variables
of e=z? and €'=y?, then get

Cq}

J11(R¢.Rz)=—m [Jo()No (u)+J1(u)Ni(w)] (u=q:1R1/2), an

where the formulae for integrals including Bessel and Neumann functions[3)] are used and N,(u) is
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the Neumann function. We must note that eq.(17) is valid for R,>>>R; because eq.(12b) is valid for
its condition as seen from (A.3) in Appendix. We here take the large R.. Then R, must also become
large by the condition R,>R;. Thus we get the asymptotic form of eq.(17) using those for J,(u) and
N" (’u) .

Ju(Ry, R sing,R. . )

C
R:)= 2 (RZ-RD)
This shows that, by introduction of R.., J(R,) derived in paper I (J(R;)<R;2) begins to oscillate
with period equal to diameter of neck(l) toward its radial direction. On the other hand, eq.(17)
shows the logarithmic divergence for R1—0. This divergence can be canceled by one due to the
interband scattering as was already shown in L.

The validity of eq.(17) is investigated numerically in Fig.2. Then, we must note that eq.(17)
is valid for R1 <<Vm;R.. The values of the effective mass m, calculated by use of the two wave
energy dispersion are m;=1/9 for v=0.4 and m; =1/4 for v=0.8 and are very small. Therefore, the
valid region of eq.(17) with respect to Zk}«Rl is very narrow in Fig.2. The denominator (RZ2-R2) in
its equation is replaced by RZ in order to consider the period of oscillation rather than the amplitude,
and O and A are calculated by use of its modified equation. As easily seen from Fig.2, the period
of eq.(17) is in good agreement with the numerical calculations for large v (v=0.8). For large v, q
is lérger. That is, when a diameter of neck(1) is large, the period of eq.(17) is good.For v=0.4, the
first zero point of both J(R.,R;) is in good agreement.

4.2.2 Region Illa

As easily seen from eq.(13b), the contribution to I, (&) due to neck(l) is zero for R,=0.
Therefore, when R, <<R;, J(R1,R.) can be caused from only belly(l). The result can be derived
by insertion of eq.(6) into eq.(1) and is given by

_Cmo9p , cosqyRy i)

Ju(R1,Rz)= 16 Rg

This result is consistent with the numerical calculations shown by the dashed lines in Fig.2. That
is, the potential dependences for periods and amplitudes of J(R .,R,) are small because its effect on
go and mg is proportional to v2 and is small. This form is very different from eq.(16) for t=0 and
means that existence of neck(1) can be ignored for t=1/2and R;>>R,.

4.2.3 Region IIb

Ju(RL,R;) in this region cannot be calculated in the present stage by insertions of egs.(13b)
and (6) into eq.(1) because integrations are difficult. Since it is predicted that contribution from
neck(l) become large compared to region Ila, it is difficult to understand the analytic structure
of Jij(R1,Rz). Furthermore, when direction of R,; is in vicinity of L, we cannot also answer
how the oscillation form giveﬁ by eq.(19) is connected to the form given by eq.(17) because the
contribution from vicinity of inflection point M is not evaluated.

Appendix

In the integrals in eq.(9), the formula for the following type integral cannot be found in
the book[3].

I(a. b, 0= .[)wdx sinax Jo (N2 +¢%). (A.1)
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Here this integral will be evaluated. By use of addition theorem[3], we get
[oe) o0
Ha.b, =2, en(—1)" Jonlbe) [ do sinax Jon(bz), (A.2)

where € =1 and €,=2(n>0). The integral in eq.(A.2) can be easily found[3)] and eq.(A.2) becomes
to

I(a.b,0)= 6 (b—a) (b2—a?) ™2 ,.%: €y (—=1)" sin2nd Jyu(bc)

+0 (a—b) (a2—b2) V2 "Z €, tan®" € Jon(bo), (A.3)

where sind=a/b and sin2€ =b/a.In the second term, because of tanf <1, only its leading term (=0)
is remained.
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