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1. Introduction

H. A. Antosiewicz (1] showed that if there exists a Liapunov function with a negative
definite derivative for the system (E) x’=f(t, x), then the zero solution of (E) is stable and every
solution x(t, t,, Xo) starting with || x, Il sufficiently small tends to zero on some sequence of points
th— .

What further restrictions are necessary and sufficient for every solution to be integrable on
the half - line to the right of the initial point t, ?

To provide an answer to this question, A.Strauss (2] introduced a new kind of stability,
i. e., L? - stability.

Many authors have discussed the LF- stability ( cf.(3),(4)and (5). We also have obtained
some results of LP - stability in the large of nonlinear differential - difference equations (6.

In many applications, we need to see the qualities not of the whole solution but of the partial.
C.Corduneanu (7) and A.Halanay (8) have obtained some results of the partial stability. And
we presented several results concerning it in (9), (10), (11) and (12).

In this paper, we describe several results concerning the partial L? - stability of the solutions
of differential equations.

C.Corduneanu (13) and H.A.Antosiewicz (14) observed that the Liapunov’s second method
depends basically on the fact that a function u(t) satisfying the inequality w=g(t,u(t)) (u(t, )=r,,
is majorized by the maximal solution of the scalar differential equation (E*)r’=g(t,r),r(t,)=r, .
As the comparison principle reduces the problem of determining the behavior of the solution
of (E) to the solution of a scalar equation (E’), it is a very impotant tool in applications. It is
particularly useful in dealing with a variety of qualitative problem, see for example (15) We shall
use this comparison technique for out results.

2. Notations and Definitions

Let R" denote the interval [0,°) and R¥ denote Euclidean k - space. For xERFE, let I X1l be
any convenient norm, and we shall denote by S the set of x such that {| Xll<p. As usual, we shall
use ’ instead of d/dt.

Let E be an open (t,x) - set in R*! . We shall mean by C[E, R¥] the class of continuous
mappings from E into R". For brevity, K denotes the families of continuous increasing, positive
definite functions.

Let us consider a differential system of the form

x' =fi1(t, x,y), x(to ) = Xo ,
{ W

y' =f2 (t: X. Y) ’ Y(to )=YO ’
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where f; € C[J><Rn XRm, R"], foe C[Jan xR™ , Rm] and J is a t - interval containing t, . Let us
denote a solution of (1) by x(t) =x(t, to, X0, Yo)» Yt)=y(t, to, X0, Yo)-
We define the function

D*V(, x, y)= linil1 sup % (V(t+h, x+hfi(t, x, y), y+hfa(t, x, ¥)) - V(t, x, ¥)}
—)+0

for (t, x, y) € JXR*xR™,
Further, we consider a scalar differential equation

u’'=g(t, u), u(te)=u,, (2)

where g € C[JXR*, R] and g(t, 0)=0 (Vite J).

(Definition1)  The zero solution of (1) is said to be partially L” - stable with respect to x if it is
partially stable with respect to x and there exists a 8,=28, (t5)> 0 such that I x, Il + lly, | = 9,
implies

S rol %(t, to, %o , o) II” dt < oo (@)

(Definition2)  The zero solution of (1) is said to be partially uniformly LP- stable with respect
to x if it is partially uniformly stable with respect to x, the 8, in Definition 1 is independent of t,
and the integral (3) converges uniformly in t, .

(Definition 3)  The zero solution u=0 of (2) is said to be L!- stable if it is stable and there exists
a 8, =0,(t,)> 0 such that u, = 8, implies

Jooult, to, up)dt < co. @

(Definition4)  The zero solution u=0 of (2) is said to be uniformly L!- stable if it is uniformly
stable, the &, in Definition 3 is independent of t, and the integral (4) converges uniformly in t,

Preliminary Results

[Theorem 1] Let VEC[JXR"XR™R*] and V(tx,y) be locally Lipschitzian in x and . Assume
that the function D*V(txy) satisfies
D*V(t,x,y)= g(t, V(t,x,y) (Lxy)EJ X SpX R™,
where g€ C[JX R ,R]. Let r(t) be the maximal solution of (2).
If (x(t)y(t)) is any solution of (1) such that V(to,Tosyo)=uo,then V(tx(t)y(1)S r(t) for any tZ1o.
For the proof, see [5]. ]
[{Theorem2) Assume that there exist functions V(ix,y) and g(iu) satisfying the following
conditions;
i) VEC[JX SpX R™R*], V(t00)=0 (vVi€J) and V(ixy) is locally Lipschitzian in x
and y, g€ C[JX R*,R] and g(1,0)=0 (Vi€J),
Gi) el zll )= V(taxy), where a € C[JXR*, Rt] is increases monotonically with respect
to t for each fixed r, a(t,0)=0 (Vi€ J) and a(l,7)>0 for r#0.
(iii) D*V@xy) S g, Vitxy), (txy)EJXSpXR™
Then the stability of the zero solution of (2) implies the partial stability with respect to x
of the zero solution of (1).
For the proof, see [11].
[Theorem 31  Assume that there exist functions V(ixy) and g(tu) satisfying the following
conditions; '
1) ve CfJX SPX R™R*], V(t00)=0 (Vi€J) and V(taxy) is locally Lipschitzian in x
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and y, g€ C[JX R*,R] and g(0)=0 (ViEJ),
(1) e (lixl) EV(gxy) <b (lxli+ liyll) , where aE€C[JXRY,R¥] is increases monotonically
with respect to t for each fixed 7, a(t,0)=0 (Vt€J) and a(t,r)>0 for r+#0, and bEK.
(iii) D*V(iwxy) = gt Vitxy) (Lxy)E JXSpxXR™
Then the wuniformly stable of the zero solution of (2) implies partially uniformly
stable with respect to x of the zero solution of (1)
For the proof, see [11].
[Theorem 41 Assume that there exists a function V(tx,y) satisfying the following conditions;
(1) VEC[IX SpX R™R*], V(1,0,0)=0 (Vi€ J) and locally Lipschitzian in x and y,
(i) atllxll )= V(taxy), where a€EC[IXRYRY] is increases monotonically with respect
to t for each fixed 1, a(t,0)=0 (Vi€ J) and a(t,r)->0 for r¥0,
(iii) D'V(t,xy)=0.
Then the zero solution of (1) is partially stable with respect to x.
For the proof, see [10].
[Theorem 5) Assume that there exists a function V(tx,y) satisfying the following conditions;
(i) VEC[JX SpX R™R*], V(1,0.0)=0 (Vi€J) and locally Lipschitzian in x and y,
(1)  atllxl )SVitxy)<b(llxll 4+l yll ), where a€ C[JX R*,R*]is increases monotonically
with respect to t for each fixed 1, a(t,0)=0 (Vi€ J) and a(t,7)>0 for r#0, and bEK.
(iii)  D*V(tx,y)=0.
Then the zero solution of (1) is partially uniformly stable with respect to x.
<Proof> For any ¢ >0, we can choose a & (€)>0such that Il x, Il + Il y, | <0 implies
b(d)<a(0, €), because b(r)EK.
Suppose that there exists some t; such that Il x, Il + l y, I| <0 implies
I x(ty, to, X0, Yo) Il = €, t;>t,. From the conditons (ii) and (iii), we have

a(0, €) = a (ty, €)
=V (tg, x(ty), y(ty))
= V(te, x(tg), ¥(t))
= b(llxe H+ 1y, )
< b (9)
< a (0,¢)

This is contradiction. Therefore, the zero solution of (1) is partially uniformly stable with respect to x.

Main Results

[Theorem 6] Assume that there exist funciions V(tx,y) and g(tu) satisfying the following
conditions;
(i) gEC[JXRY,R]and g(t,0)=0 (Vi€ J),
(il) VECHX SpX R™R'], V(t00)=0 (Vi€J), V(txy) is locally Lipschitzian in x and
y,and All xII° = V(t,ay), A>0, (ta,y)EJX SpX R™,
(iil) D¥V(xy)=gtt, V(txy)), (txy)EJX SpX R™.
Then the L'-stability of the zero solution of (2) implies the partial LP-stability with
respect to x of the zero solution of (1).
< Proof> Since the zero solution u=0 of (2) is L'- stable, it is stable and there exists a & (t,)
such that uy < 0, implies (4) . By Theorem 2, the zero solution of (1) is partially stable with respect

to x.
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We shall show that there exists a 8, =0, (to) such that llxo | + [l y, | < &, implies (3).
Since V(t, %, y) is continuous and V(t, 0, 0)=0 (Vt&J), for given 0, and any t, €J, there exists a
positive number &,(t,) satisfying the inequalities || xo Il + Il yo Il < 84, V(to, X0, Yo)< 0; together.
We set uo= V(ty, X0, Yo)- By using condition (ii) and Theorem 1, we have

V(t, x(t, to, Xo» Yo ) Yt to, Xo» Yo ))Sr(t, to, Ug), t=to,

where (x(t),y(t)) is any solution of (1) such that Il xll+lly,ll <& and r(t, to, up) is maximal
soluti on of (2) . From this, it follows that

Allx(t) I® =V (¢, x(t), y(t))
= r(t, to, Uo)

and hence
Sro 1%(t, to, Xo,¥0) 1P AAS1/A [i5 r(t, to, ue)dt <co.

Thus, the proof is complete.
[Theorem 7] Assume thalt there exist functions V(ix,y) and g(tu) satisfying the following
conditions;
(i) &EC[JXRYR]andgt0)=0 (Vi€J),
(i) VeCX SpX R™RY, V(t0,0)=0 (Vi€J), V(tx,y) is locally Lipschitzian in x and .y,
Allxli?P S Viay)sb(llxll + 1l ylil ), A>0, bEK,
(iii) DY Vitay)=g(t, Vitxy)), (b2,y)EJX SpX R™
Then the uniform Ll-stability of the zero solution of (2) implies the partially uniform
I?-stability with respect to x of the zero solution of (1).
<Proof> From Theorem 3, the zero solution of (1) is partially uniformly stable with respect to
x. Since the zero solution of (2) is uniformly L' - stable, there exists a 0, (&) such that u, = 0,
implies (4) and the integral (4) converges uniformly in t,. To prove that the integral (3) converges
uniformly in t, , we follow the proof of Theorem 6 and choose uo= b( Il x, Il + Il yo Il ), thereby
deducing 8,=b ! (0, ). It is evident that 0, is independent of t, and the integral (3) coverges
uniformly in t, .
[Theorem 81 Assume that there exisis a function V(ix,y) satisfying the following conditions;
(i) VECXSpX R™R*], V(1,0,0)=0 (Vi€ J) and locally Lipschitzian in x and y,
(ii) a Nzl )=V@ixy), where a€C[JX R*,R*] is increases monotonically with respect to
t each fixed T, a(1,0)=0 (Vi€ J) and a(t,7)>0 for r¥0,
(iii) D¥Vitxy)=—Cllzl?, (txy)EJX SpX R™, C>0.
Then the zero solution of (1) is partially LP-stable with respect o x.
<Proof> By Theorem 4, it follows that the zero solution of (1) is partilly stable with respect
to x. Hence, there exists a 8= 04(to)> 0 such that if || xo Il + |l yo Il < 0o, then (t, x(t, to, X0, Yo)) €
JIxSp for t= to. Define

t
m(t)=V({#, x(t, to, X0, Yo )» ¥(t, tos X0 Yo ))+Cjto Il x(t, to, Xo, ¥o) Il *dt.
By condition (iii), we have
m’ (t) = D*V(t, x(t, to, Xo» Yo)» ¥(ts ter Xo» Yo)) +C Il x(t, to, Xo, ¥o) I° <O0.

This implies that m(t) is nonincreasing, therefore
fto 1 x(t, to» Xo» Yo ) II® dt= m(te)/C=V(to, X0, ¥o)/C for t=to.
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Thus the proof is completed.
[Theorem9) Assume that there exists a function V(txy) satisfying the following conditions;

(i) vecy XSpXR"‘,R"‘], V(t,0,0)=0(VtEJ) and locally Lipschitzian in x and y,

(i) aft Il x Il )= V(tay), where a€C[IJX RYR*] is increases monotonically with respect
to t for each fixed r, a(t,0)=0 (Vi€ J) and a(t,r)>0 for r*0

(iii) DYV(tzy)=—Clixli? , (t,2,y)EJX SpX R™, C>0.

Then the zero solution of (1) is partially uniformly LP-stable with respect to x.

<Proof> Condition (iii), in virtue of (ii), reduces toD*V(t, x, y)=<g(t, V(t, x, ¥)),where
g(t,u) = —(C/B)u, and hence it is easy to check that the solution u=0 of (2) is uniformly L! - stable.
Therefore, from Theorem7, the zero solution of (1) is partially uniformly L - stable with respect to x.
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