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1. Introduction

Liapunov’s second method is widely recognized as an indispensable tool in studying not only the
theory of stability but also many other qualitative properties of solutions of differential equations.

The main characteristic of this method is the introduction of the Liapunov function which defines
a generalized distance from the origin of the phase space. As a result, the concept of Liapunov function
furnishes a very general comparison principle which has been used in dealing with a variety of
qualitative problems, that is, it reduces the problem of determining the behavior of solutions in a system
of differential equations to the solution of a scalar differential equation.

In this paper, we present several results concerning the asymptotically integral stability bringing out
the real significance of the comparison technique.

2. Definitions and Notations

Let R" denote Euclidean n-space and R* denote the interval [0, ). For x € R", let |x| be any
convenient norm. We shall mean by C(R* X R" R") the class of continuous mappings from R* X R" into
R". For brevity, % denote the families of continuous increasing, positive definite functions.

We shall consider the differential system

and its perturbed system

x' = f(t, x)+ R(¢, x), (2)
where f, R € C(R*X R", R"), f(t,0) = 0.
Furthermore, consider a scalar differential equation
"= g(t,u) ®

and its perturbed system

w = g(t, u)+ o(s), (4)

where g € C(R*XR*, R), ¢ € C(R*, R*) and g(¢,0) = 0.
For V &€ C(R*XR" R*), we define the function

D*V(¢, x) = lim sup %{ V(t+h, x+hf(t, £)— V(¢ 2}

Occasionally, we write D* V(¢, x)u) to denote that the definition of D* V(#, x) is with respect to the
system (1).

Let x(¢, &, x0) be any solution of (1) or (2) such that x(%) = xo, and let (¢, f, uo)-denote any solution
of (3) or (4) such that u(4) = wo.

Here, we give the definitions of integral stability.
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[Definition 1] The zero solution x = 0 of (1) is said to be integrally stable, if for Vg=0and V46 € R*,
there exists a positive function 8 = B(t, a), which is continuous in 4 for each « and 8 € ¥ for each t
such that, for any solution x(¢, %, x0) of the perturbed system (2), lxoll < @ and YT > 0,

to+T
f sup [R(s, x)lds < &
to Ixl<3

implies [|x(¢, to, %)l < B, V¢ = to.

[Definition 2] The zero solution x = 0 of (1) is said to be uniformly integrally stable, if the 8 in
Definition 1 is independent of /.

[Definition 3] The zero solution x = 0 of (1) is said to be equi-integrally attractive, if for Ve > 0, Ve
>0 and Y% € R*, there exist positive numbers T = T(f, @, €) and y = y(4, @, €) such that, for any
solutions of (2) and [xl < e,

/ sup |R(s, x)lds < 7
to [xI|<B

implies ||x(¢, to, xo)ll < €, Yt = b+ T.

[Definition 4] The zero solution x = 0 of (1) is said to be equi-asymptotically integrally stabe, if it is

integrally stable and is equi-asymptotically attractive.

[Definition 5] The zero solution x = 0 of (1) is said to be uniformly asymptotically integrally stable,

if it is uniformly integrally stable and the T and the y in Definition 3 are independent of /.
Corresponding to the definitions of integral stability (Definition 1-5), we designate by (Definition 6

-10) the concepts concerning the integral stability of the solution « = 0 in (3).

[Definition 6] The zero solution # = 0 of (3) is said to be integrally stable, if for Yaa = 0, V4 € R*,

there exists a positive function 81 = Bi(t, ), which is continuous in # for each & and 8 € .% for each

t such that, for any solution «(Z, f, uo) of the perturbed scalar equation (4), o < @ and VT > 0,

to+T
/:o o(s)ds < a

implies u(¢, ty, uo) < Bi, Yt = b
The definitions 7-10 may be formulated similarly.

3. Preliminary Results

[Theorem 1] Suppose that the maximal solution u(t) of (3) such that u () = u, stays on interval
[a, b]. If a continwous function x(t) With x(k) < u satisfies

x'(¢) < g(t, x(¢)),

where g(t, u) is continuous on an open connected set 2 C R*, then we have x(t) < u(t) for a < t < b.
For the proof, see references [1], (2] and [3].
[Theorem 2] Assume that there exist functions V(t, x) and a(t, ») satisfying the following properties :
() V& CR*XR", R*), V(t,x)is Lipschitzian in x for a constant M > 0,
Gi) a(t,lxl) < V(t, x), where a € C(R"XR", R*), a(t, r) € ¥ for each fixed t and monotone
increasing with respect to t for each fixed v,
(iii) D* V(¢ x)oy < g(¢t, V(¢, x)).
Then the integral stability of the zevo solution u =0 of (3) implies the integral stability of the zero
solution x = 0 of (1).
For the proof, see reference [4].
[Theorem 3] Under the assumptions of Theorem 2, if the zero solution u =0 of (3) is uniformly
integrally stable, then the zero solution x =0 of (1) is uniformly integrally stable.
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For the proof, see reference [4].
[Theorem 4] Assume that there exist function V(t, x) and a(») satisfying the following properties :

(i) Ve C(R*XR" R"), V(t,x)is Lipschitzian in x for a constant M > 0,

(i) allxl) < V(1 x), where a € . % and a(r)- uniformly in t as »— o,

(i) D*V(¢, x)a) < g(t, V(¢, x)).

Then the equi-asymptotically integral stability of the zero solution u = 0 of (3) implies the equi-
asympltotically integral stability of the zero solution x(t) = 0 of (1).

For the proof, see references [1] and [2].
[Theorem 5] Under the assumptions of Theorem 4, if the zero solution u =0 of (3) is uniformly
asymptotically integrally stable, then the zero solution x = 0 of (1) is uniformly asymptotically integrally
stable.

For the proof, see references [1] and [2].

4. Main Results

[Theorem 6] Assume that there exist function V(t, x) and a(t, ») satisfying the following properties :

(i) VeE C(R*'XR" R*), V(¢t,x)is Lipschitzian in x for a constant M > 0,

(i) a4, lxl) < V(¢, x), where a € C(R* X R*, R*), a(t, ») €% for each fixed t, monotone increas-
ing with respect to t for each fixed » and a(t, »)— oo uniformly in t as =,

(i) D V(t, x)a < g(¢, V(¢, x)).

Then the equi-asymptotically integral stability of the zero solution u = 0 of (3) implies the equi-
asymplotically integral stability of the zero solution x = 0 of (1).
Proof. Since the zero solution # = 0 of (3) is equi-asymptotically integrally stable, the zero solution 2
= 0 of (3) is integrally stable. Hence, by Theorem 2, the zero solution x = 0 of (1) is integrally stable.

Now, we show that the zero solution x = 0 of (1) is equi-integrally attractive. For Y& >0, Va >
0 and Y/ € R", let |xl < @ and define & = Ma. By the integral stability of the zero solution x = 0 of
(1), there exists a # = B(t, @) such that

to+T
_/:D IIEI}JSDB IR(s, X)lds < @ for YT > 0

implies [|x(¢, t, x0)|| < B(t, @) for V¢ = 4,

Since the zero solution of (3) is equi~integrally attractive, it follows that for given a(f, &) >0,
@ =0, and & € R, there exists a pair of positive numbers 71 = y(#, &, €) and Ty = Ti(4, @, €) such
that

,/,'0 o(s)ds < 7, U S (5)
implies
ult, t, u0) < alt, €) for ¥¢ = ty+ T, (6)

where ¢ € C(R*, R*) and u(¢, k, uo) is any solutions of (4).

Now, we set y = »/M and T = Ti. Let {#) be a sequence such that # > to+ T, tx—> as k- oo,
Suppo_se that there is a solution x(¢, &, x0) of (2) such that ||lx|| < @ and |x(Z, %, x0)l = €. From (i) and
(iii), we have

DV, ) < g(t, V(t, x(¢)))+ M| R(t, (). v ™

If we define ¢(t) = M-|R(t, x($))l, we have
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[ ets)ds = [ MAIRGs, x(sDlds

<M [ sup IRGs, x()lds
<M-y=n,
by using the fact that _/: sup, I|R(s, x(s))lds < y. This implies that, for solutions (¢, t, uo) of (4), (6)
is true, because of (5). Moreover, by (7) and the definition of ¢(¢), it follows from Theorem 1 that
V(t, x(8)) < v(¢, to, un), Yt = to, (8)

where 7(¢, t, uo) is the maximal solution of (4). Hence, relations (6), (8) and the assumption (ii) lead us
to the contradiction

alte, €) < alts, |x(tx, to, x0)I))
< Vi, x(te, to, %))
< 7(tu, lo, o)
< alh, €),

which proves the equi-integrally attractive of the zero solution x = 0 of (1). Therefore the zero solution
x = 0 of (1) is equi-asymptotically integrally stable.
[Theorem 7] Under the assumptions of Theorem 5, if the zero solution u =0 of (3) is uniformly
asymptotically integrally stable, then the zero solution x = 0 of (1) is uniformly asymptotically integrally
stable.
Proof. Since the zero solution x = 0 is uniformly integrally stable, there exists a 8 = £(a) such that
for llxll < @and YT >0,

ftm sup [|R(s, x)lds < a

to lxll<s

implies [|lx(¢, o, x0) < B(a) for Yt = t. By the uniformly integrally attractive, for given (0, €) >0,
o = Ma and & € R*, there exists a pair of positive numbers 7, = yi(a, €) and 71 = Ti(a, €) such that

f o(s)ds < 7 for uo <

to
implies wu(¢, to, uo) < a(0, &) for V¢ = fo+ Th.
Therefore, ¥ and T are independent of f. The rest of the proof is just the same with that of
Theorem 5.
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