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1. Introduction

A variant of the notion of total stability is obtained if instead of requiring that the permanent
perturbations be small all along, we only require that they be small in the mean. A slightly different
variant of the same type of stability, equally based on the idea of considering perturbations which can
be great in certain moments but are small in the mean, has been defined by Ivo Vrkoc. It is called
integral stability.

Many authers have discussed the integral stabilty. (cf. (1), (2], (3], (5], (6).)

As is well known, Liapunov’s second method has its origin in three simple theorems that form the

core of what he himself called his second method for dealing with questions of stability. It is widely
recognized, today, as an indispensable tool not only in the theory of stability but also in studying many
other qualitative properties of solutions of differential equations. The main characteristic of this
method is the introduction of a function, namely the Liapunov function, which defines a generalized
distance from the origin of the motion space.

Liapunov’s second method is a very useful and powerful instrument in discussing the stability of the
system of differential equations. Its power and usefulness lie in the fact that the decision is made by
investigating the differential equation itself and not by finding solutions of the differential equations.
However, it is great difficult to find the Liapunov function satisfying certain conditions. Therefore, it
is important to obtain a weak sufficient condition for a stability theorem.

In this paper, by using the Liapunov’s second method, we will state some extension of the sufficient
conditions for the uniformly integral stability and the uniformly asymptotically integral stability.

2. Notations and Definitions

First, we summarize some basic notations and definition we will need later on.

Let I denote the interval 0 < ¢ < %, R" denote Euclidean n-space and R* denote the nonnegative
real line. For x € R”, let |x| be any norm of x and we shall denote by Su the set of x such that [|x[l <
H, H>0.

We consider a system of differential equations

dx _
(1) dat = f(t, x),

where x is an n-vector and f(¢, x) is an n-vector functions.

Suppose that f(¢, x) is continuous on /X R™ and that (¢, x) is smooth enough to ensure existence,
uniqueness and continuous dependence of the solutions of the initial value problem associated with (1),
moreover, f(¢,0) = 0.

We shall denote by C(I X R", R™) the set of all continuous functions defined on I X R" with valued
in R". Throughout this paper, a solution through a point (f, xo) € I X R" will be denoted by such a form
as x(t, to, xn). '

We introduce the following definitions.
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(Definition 2.1) Corresponding to a continuous scalar function V (¢, x) defined on an open set, we define
the function

Va(t, x) = }1_r0r1 —}Z'{ V(t+h x+hf(t x)— V(¢ x)}.

In case V(¢, x) has continuous partial derivatives of the first order, it is evident that

Vi, ) = L+ S (4, ),

where “+” denote a scalar product.
3. Uniformly Integral Stability

We consider the differential equations

) Z’;% = f(¢, %), f(¢,0) =0, where f(¢,x) e CUXR", R"),

and its perturbed system

(2) (—(2}7— = f(¢, x)+g(t, x), where g(t,x) e CUXR", R™).

Let us first define the notion of the integral stability.
(Definition 3.1) The zero solution of the system (1) is said to be integrally stable if for any € < 0 and
any f 2 0 there exist 6(%, €) > 0 and 8x(fo, €) > 0 such that |xo]| < 8\(t, €) and

/: |‘suup lg(¢, x)lldt < 8:to, €) implies llx(¢, to, x0)| < & for all ¢ = #,
0 Jixffse

where x(¢, #, x0) denote a solution of the system (2) satisfying a initial condition x(%, o, Xo) = Xo.
(Definition 3.2) The zero solution of the system (1) is said to be uniformly integrally stable if 8 and
82 in Definition 3.1 are independent of f.
It is easy to see that Definition 3.2 is equivalent to the following.
(Definition 3.3) The zero solution of the system (1) is said to be uniformly integrally stable if for any
@ >0 and f = 0 there exists 8 = (@) > 0 such that the inequality ||x| < @ and
/: Sup, lg(t, x)Idt < a implies lx(¢, to, xo)ll < B(a) for all ¢ =
For proof, see (3).
In (3), A. Halanay proved the next theorem.
(Theorem 3.1) If there exists a continous function V(t, x) defined on IX Sy with properties :
(i) allxl) = V(¢ x), V(¢,0) =0, where a(7) is a continuous, positive definite and increasing
Junction,
(i) |V, x)= V(¢ v < Mlx—yl, M >0,

(i) Vit x) < g(0) V(¢ x(t, to, x0)), with lwg(t)a’t < 0, g(t) = 0, where x(t, b, %0) is @ solu-

tion of the system (1),
then the zero solution of the system (1) is uniformly integrally stable,
Before we state main result, we give the following lemmas we shall need later on.
(Lemma 3.2) The zero solution of the system (1) is uniformly integrally stable if and only if for any
€>0and to 2 0 there exist 6u(e) > 0 and 8:€) > 0 such that if o(¢) is any continuous function defined
on [t, ) and satisfies

[: le(tldt < 8x(e), L
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then any solution y(t, to, yo) satisfying l|yoll < 6i(e) of the system

3) D — 12, y)+ o(1)

verifies the inequality ||y(¢, to, Yol < € for all t = t
Proof. The necessity of the condition is clear. Therefore it suffices to prove that if the property
from the statement occures, the zero solution of the system (1) is uniformly integrally stable.

Let g(¢, x) be such that [ sup lg(t, x)lldt < 82(€), where 82(€) is one given in the condition.
o | X | 13

Consider a point xo with [xoll < 8i(€) and the solution x(¢, %, xo) of the system (2).

If we would not have for all ¢ = 4 the inequality [|x(¢, f, x0)ll < &, there exists a first point ¢ such
that [x(#, t, x0)ll = € and |x(¢, o, x0)| < € for all ¢ € [4, 4]. For any ¢ € [#, 4] take
o(t) = g(t, x(¢, to, x0)), we have

S eolar = [ sup lett, 2lar < o).
We extend ¢(¢) continuously on the whole semiaxis ¢ = # such that f le*(Dlldt < 62(5) where

@*(¢) is a extended function, for this it is sufficient to take #. > # such that

28() = [ le(Olat)
1+l ’
¢*(t) = ¢(¢) for all ¢t € [, 4], linear on [#, t.], where we put ¢*(¢;) = 0, and zero for all ¢ =
We consider the following system (4).

D — £(t, )+ g*0).

h—h <

(4)
Now let y(¢, fo, x0) be a solution of the system (4).

From [lxl < 8i(€) and flo le*(Olldt < 8.(€), we have |¥(¢, to, x0)ll < € for all ¢ = 4 : hence
ly(ti, to, %) < €. But we have y(¢, t, x0) = x(¢, to, x0) on [, 1], hence l|x(#, t, x)l < &, which is contra-
dictory.

[(Lemma 3.3) The zero solution of the system (1) is uniformly integrally stable if and only if for any
€ >0 and ty 2 0 there exist 8:(€) > 0 and 8:e) > 0 such that for any t > t whichever be y(t) with

continuous derivative on [t, h] with |y(t)| < 6i(g), : ﬂ-—f(t, y(t)|dt < 8e), it will follow that
w Il dt

lv(OI < & for all t € [to, t].

Proof. Let us suppose that the zero solution of (1) is uniformly integrally stable, let 8i(¢) and 6:(€)
be defined according to be the property of uniformly integral stability and let ¥(¢) be as in the statement.
Let ¢*(¢) be continuous for all ¢ = % such that
o*(t) = y(t)— f(¢, ¥(¢)) on [k, #:], linear on [#, t.], where ¢ is chosen such that

o o) [ |Gt sen|ar)
1+)(L), .~ o v

and zero for ¢t = t. Then [ :ll¢>*(t)||dt < 8:e).

L—h <

We consider the system

6 %=+ oM,
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and let z(¢, 4, y(%)) be the solution of the system (5).
According to Lemma 3.2, we get ||z(¢, to, y(f))l < € for all ¢ 2 #.
Since we have y(t) = z(¢, to, ¥(f)) on [, 4], then it follow that [|y(¢)] < € for all ¢ € [&, t].
Now let 8:i(e) > 0 and 8:(&) > 0 be as in the statement of Lemma 3.3 and ¢(¢) be continuous on

[fo, o) with / le(¢)lldt < 6:(e). For this function, we consider the system (3). Then the solution
y(t, b, yo) such that |yoll < 8i(€) of the system (3) verifies for any # > # the condition of Lemma 3.3:
hence we get [|ly(¢, to, yo)ll < € for all ¢ € [k, 4], it follow that [ly(¢, &, )| < € for all ¢ = t.

Then, by Lemma 3.2, the zero solution of (1) is uniformly integrally stable.

(Theorem 3.4) Suppose that there exist functions V(t,x) € C(I XSy, R*) and g(t) € C(I, R*), which
satisfies the following conditions :
(i) altlxl) = V(¢ x), V(¢,0) =0, where a(t, ») is continuous in (¢, ), nondecreasing in r
for each t, nondecreasing in t for each r, a(t, r) >0 for any » = 0 and a(t,0)=0, -
(i) V(¢ x)— V(t, I = Mlx=yl, M >0,

(i) Valt, x) = g(8) V(L. x(2, to, x0)) with [bg(t)a't < oo, g(t) 20, where x(t, to, %) is any

solution of the system (1),
then the zero solution of the system (1) is uniformly integrally stable.
Proof. Let 6 € [#, t]; for any function y(¢) with continuous derivative on [#, ¢], we consider the
solution x(¢, 8, y(8)) of the system (1).
We have

|V(6+h, y(0+1)— V(6+h, x(0+h, 0, (O = Mly(8+h)—x(8+ 1, 6, y(O))
= [ D - [T g2, w2, 6, y(oMa|
hence,

Tim %[ V(O+h, y(8+ 1)~ V(O+h, x(8+h, 8, y(6)))]

< m|(L), 0. wo)|+s@ v von.
By integrating, we obtain
V() = Vit (i) exo (8 )+01 [ exp ( [ garane )| 2L 15, v
By the property of the function g(#), there exists a positive constant X > 0 such that
f: glu)du = K

For any & > 0 and any # Z 0, by birtue of (i), we have constants 8(¢) > 0 and 8(g) > 0 satisfying
the following condition :
Me*(8:1(e)+ 8:(e)) < al(0, e).

If Iyl < o(e) and [~ [ XL — ft, ye)|at < aue)

then

V(L (D) = Mly(lle* +M [ e
< Me*8i(e)+ Me":(e).

{22765, snas
vy
For any function y(¢) satisfying [ly(%)| < éi(e) and _/:o “%ﬁ—f(t, y())dt <\&(¢€), we prove that
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ly(l < e for all t € [t, t].
If we assume that this is not true, then there exists ¢* such that [|[y(t*)! = € and & < t* < &4.
By (i), it follows that
a(0, &) = a(t*, y(¢t*)) = V(t*, y(t*) = Me*(8:(e)+ 6:(¢)),
which contradicts.
Therefore we have [|y(¢)|| < € for all ¢ € [#, ti] for any function y(¢) with [[y(%)| < 6i(e) and
n

.d3(’1_(tt)—f(t, y(t))"dt < &xe).

By Lemma 3.3, the zero solution of (1) is uniformly integrally stable.
4. Uniformly Asymptotically Integral Stability

In this section, we will discuss the uniformly asymptotically integral stability using the comparison
technique.
At first we give the difinition of the uniformly asymptotically integral stability.
(Definition 4.1) The zero solution of the system (1) is said to be uniformly integrally attractive if for
any € > 0, @ = 0 and 4 = 0 there exist y(e, €) > 0 and 7'(a, €) > 0 such that the inequality ||lxoll < « and
f: Sup, lg(t, x)dt < y(a, €) implies x(¢, t, x0)| < € for all ¢t = t+ T(a, €).
(Definition 4.2) The zero solution of the system (1) is said to be uniformly asymptotically integrally
stable if it is uniformly integrally stable and is uniformly integrally attractive.
(Definition 4.3) The zero solution of the system (1) is said to be uniformly stable if for any € > 0 and
o = 0 there exists 6(e) > 0 such that [lx] < 8(e) implies [x(¢, t, x0)| < € for all ¢ = .
(Definition 4.4) The zero solution of the system (1) said to be uniformly attractive if for any ¢ > 0 and
fo = 0 there exist do > 0 and 7'(&) > 0 such that the inequality [lxoll < 8 implies l|lx(¢, f, x)ll < € for all
t = to+ T(e).
(Definition 4.5) The zero solution of the system (1) is said to be uniformly asymptotically stable if it
is uniformly stable and uniformly attractive.
We shall need the comparison theorem to prove uniformly asymptotically integrally stable. Let us
state the comparison theorem in the following form.
(Theorem 4.1) Let V(t,x) € CUXR" R") and V(¢ x) be locally Lipschitzian in x. Assume the
function V(t, x) satisfies
Vat, x) < b(t, V(¢, %)), where h(t, u) € C(I X R*, R).
Let 7(t, ty, x0) be a maximal solution of the scalar differential equation
du
dt
existing to the right of to. If x(t, t, %0) is any solution of the system (1) existing for all t Z ty such that
Vb, x0) = wo, then V(t, x(t, to, x0)) = »(¢, to, uo) for all t Z t.
For proof, see (6).
The definition of uniform stability of the zero solution of the system (1) can be formulated by means
of monotonic function, as can be seen by the following.
(Theorem 4.2) The zero solution of the system (1) is uniformly stable if and only if there exisls a
Sfunction o(r), where o(r) is continuous, strictly monotone increasing and p0) = 0, verifying the estimate
lz(2, to, o)l = o(lx0ll) for all t = t.
We may likewise state the following theorem with respect to uniformly asymptotic stability.
(Theorem 4.3)  The zero solution of the system (1) is uniformly asymptotically stable if and only if there

= h(t, u), u(t) = wuo,
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exist functions p(r) and o(r), where o(r) is continuous, strictly monotone increasing and o(0) = 0, o(»)
is continous, decreasing, and o(t) — o as t — 0, such that |x(¢, t, x0)|l £ p(lxol)o(t — t0) for all
t 2t

To use the second method of Liapunov, which attempts to make statement about the stability
properties directly by using suitable functions, we need the scalar differential equation
(6) D — i, ), ult) =

where A(t, «) € C(I X R*, R) and h(¢,0) = 0.
(Theorem 4.4) Suppose that there exist functions V(t, x) € C(IX R", R*) and h(t, u) € CUXR"*, R)
satisfying the following conditions :
(i) a(t lxl) = V(¢ x), V(L.0) =0, where a(t, ) is continuous in (¢, r), nondecreasing in v
for each t, a(t, r) > 0 for any » * 0, a(£,0) = 0 and a(t, r) — oo as r — o uniformly
in t,
(i) V(t,x)= V(= Mlx—yl, M >0,
(iii)  7(¢,0) = 0 and h(t, w) is nonincreasing in u for each t,
(iv) Vit x) < k(t, V(2,%)).

Then the uniformly asymptotic stability of the zero solution of (6) implies the uniformly asymptotical-
ly integral stabilily of the zero solution of the system (1).

Proof. We first prove the uniformly integral stability. By Theorem 4.2, the unform stability of the
zero solution of (6) implies the existence of a function &(») such that 5(7) is continuous, strictly
increasing, 5#(0) = 0 and w(¢, o, 20) = b(wo) for all ¢t = ¢,

Now let @ = 0 and /& = 0 be given, and let |xol = @. Then we have, from (ii), V(, %) = Ma. Let
x(¢, t, x0) be any solution of (1) with |xll = @, and let m(¢) = V(¢, x(¢, t, x0))— @(¢), where

o(t) = M [ llg(s. x(s, t xa)lds.

Using (iv), we get m(¢) < h(¢, V(¢, 2(¢, to, %0))), from which it follows #n(¢) = h(¢, m(t)), because of
the nonincreasing property of 4(¢, ) in » and the fact m(¢) < V(¢, x(¢, t, x0)).

By the comparison theorem, we then have, as far as x(¢, £, xo) exists to the right of &,
m(t) < (¢, to, o), where #(t, to, uo) is the maximal solution of (6) with o = m(#).

Let A(@) > 0 be so chosen that b(Ma)+ Ma < a(0, B(a)), this choice is clearly possible in view of the
fact that a(¢, ») — oo as » — oo uniformly in ¢.

We claim that, with this B(a), the zero solution of (1) is uniformly integrally stable whenever

o

%l < @ and f sup llg(t, x)ldt < a.
to ||x|s 3(a)

Assuming that this claim is false, there exists * > & such that |x(¢*, f, x0)| = 8(2) and
Ix(¢, &, xo)ll = B(a) for all t € [#, t*). Then we obtain a(0, A(a)) < a(t*, |x(t*, to, %))

S V(t*, x(t*, to, x0)) < 7(t*, to, to) + ¢(t*) = b(Ma)+ Ma, which contradicts.

Therefore, the zero solution of (1) is uniformly integrally stable.

Next, we prove that the zero solution of (1) is uniformly integrally attractive. By uniformly
asymptotic stability of the zero solution of (6), we have w(¢, t, uo) < b(uo)p(t— to) for all ¢ Z b, where
b(7) is continuous, strictly increasing and b(0) = 0, p(¢) is continuous, decreasing and p(¢) — © as ¢
— oo, If we are now given € >0, @ 2 0 and 4% = 0, we make the following choice:

My (e) < a0, B7'(e)).
We put (e, €) = min {»(e), a}. For any solution x(¢, t, x) of (1), we put

m(t) = V(¢, x(¢, b, %)) — ¢(t), where ¢(t) = M [: llg(s, x(s, to, x0))llds. a
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As above seen, we hfave m(¢) = »(¢, to, uo) for all ¢ = t, with we = mi(t).
By the property of the function p(¢), there exists T(a, €) > 0 such that

p(t—t) < a(0, B~ '(be()l)wa)llfl)'(a €) for all ¢t = fh+ T(a, €).

For any solution x(¢, f, xo) of (1) with [xl < a, there exists ¢t* > 4 such that [|x(¢*, t, xo)ll < 87'(e).
In fact, if we assume that this is not true, then ||x(¢, f, x0)ll = B87'(¢) for all ¢ = 4. For all

2 t+ T(a, €), we have

a0, B7'(e)) = alt, lIx(t, to, xo)) = V(¢, x(¢, to, %0))
= b(uo)p(t —to) + My(a, &) < a(0, B7'(e)),

which contradicts.

t 2

Consequently, there is ¢* such that [|x(¢*, %, x0)| < 87'(e) and & < t* < f+ T(a, €).
Thus, by the uniformly integral stability of the zero solution of (1), we have ||lx(¢, 4, x0)l| < ¢ for all
to+ T(a, €), provided |lxl = « and f "sup lg(t, x)ldt < a.

This proves that the zero solution of (1) is uniformly asymptotically integrally stable.

References

(1) 1. Vrkoc: Integral Stability, Czechoslovak Math. J., vol. 9 (1959), pp. 71-129.
(2) A. Halanay : On the Asymptotic Behavior of the Solutions of an Integro-Differential Equation, J.

Math. Anal. Appl., vol. 10 (1965), pp. 319-324.

(3) A. Halanay : Differential Equations, Academic Press, 1966.
(4) T. Yoshizawa : Stability Theory by Liapunov’s Second Method, The Mathematical Society of

Japan, 1966.

(5) T. Yoshizawa : Stability Theory and the Existence of Periodic Solutions and Almost Periodic

Solutions, Springer-Verlag, 1975.

(6) V. Lakshmikanthan and S. Leela: Differential and Integral Inequalities, Vol.1, Ordinary

Differential Equations, Academic Press, 1969.

M ST RACES 23 5





