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1. Introduction

The Gd compounds are the typical materials for which the magnetism can be
described only by the RKKY interaction. We have chosen the Gd monopnictides (GdX :
X =N, P, As, Sb,) and calculated the RKKY interaction J(Ra.) using the simplified
band structure [1—4], because they crystallize in the simple NaCl type structure and
their band structures have the common properties to other rare earth monopnictides and
monochalcogenides [5—7]. The theoretical results have been compared with the experiments.
The agreement between the theory and the experiments is good for GdN but bad for
other pnictides for which the theory gave the ferromagnetic ordering while the experiments
show the antiferromagnet [13, 18]. In order to develope the theory further so as to
explain the experiments more completely, we must refine the approximation for the band
structure. For this purpose, it is convienient to use the band structure due to the tight
binding model. We will calculate numerically the susceptibility ¥(Q) using its band
structure, because the calculation of it is easier than that of J( Rn) and it gives the direct
information about the spin ordering. In this note, I consider the numerical calculation
method of X(Q@), including the treatment of the symmetrical property of matrix

element, and show its numerical result for a semiconducting GdN as the first step
in the sequence of these calculations.

2. Symmetry of the matrix element

In the tight binding model [8-10], the 5d electron on Gd sites and the p electron

on pnictogen sites are treated as the band electron. The Bloch function @, (r) with the
band number v in this model can be constructed in the form,

Bu (r) = V—I:sz exp (ikRn) By 4 (r—Ra), e

where ¢, (r—-Ra) is the atomic wave functions with the cubic symmetry on the site Ra,
and it has the d character on Gd sites and the p character on pnictogen sites, N is the
number of Gd atom per unit volume, and By,, is the expansion coefficient, in which it

for the d and p characters can be chosen to be real and pure imaginary, respectively.
If R is a rotation of the cubic point group On, then

P (R) #4k(N= 8 (R' N =7 5 3 exp (ikRn) Buka bo (R r-Ra), 2

Introducing the lattice vector Rm=RRa, we get ¢, (R'r—Ra)=P (R) %, (r') in which r'=
r-Rm. As is well known, using the representation matrix I'(R) of On, we obtain

P(R) ¢4 (r)=2 I'(R)pa b5 (r') . 3)

Note that I'(R) can be reduced to the three irreducible representations for which the
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cubic basis functions are (x, y, z), (xy, yz, zx) and (x%-y?, (32-r2)//3). The matrix
corresponding to each irreducible representation can be found easily by (3) and is also
tabulated in the text of the group theory [10]. On the other hand, on a basis of the
Bloch theorem, we get ¢, (R7'r)=exp (ik-R'r) Uy (R'N=exp (iRk-r) uye (R'r) whichis
a Bloch function @, g (r) with wave vector Rk. The expansion form for the ¢, g (r)
similar to (1) can be also written. Thus, we can obtain the relation

By rk, 5= 5: I'R)pa Buxa- (4)
The matrix element M(v'k’: vk) appearing in J(R.) is given by
M((v' k’:vk)= -f % Byrwp Buk'a Buke Bukg (5)

where @ and f are the 5dt,; and 5deg; states because the intra-atomic d—f Coulomb
exchange interaction is assumed in J(Ra). By uses of (4) and the orthogonarity of the
matrix I (R) in which only the irreducible representations for the basis functions with

tz¢ and eg symmetries are used, we can easily get the symmetry of the matrix element
M (v', Rk : v,Rk)=M(v' Kk': vk). (6)

3. Numerical calculation method of 2(Q)

The RKKY interaction J (Ra) [11] is given by

J (R )=_2I_2 55 53 M(v' K:vk fu(1—1fyry) . ,

n NZ 7% % v Ty )m exp [1 (k-k’) Rn], (7)

where [ is the intra-atomic d-f Coulomb exchange integral, E,, the band energy,
the Fermi distribution function for T=0K,

fyx
and M (v’ k’: vk) is the matrix element given
by (5). The susceptibility X(Q) is defined as the Fourier transform of .J(Ra), and is

given by
X (Q)= %3 ) { M (v’ k+@+K: v k) f"",(l_f”"i*%”‘) , 8)
v, kerk — By
where the reciprocal lattice vector K is chosen so that the vector k+@+K can be in the :
first Brillouin zone (referred to as B. Z below). Because E,, and M(v'k’:vk) calculated
in the tight binding model are used in (8), the k integrations over the B. Z must be !

performed numerically. |
As well known, E,, has the symmetry of Ey re=E,, in which R is a rotation of

On - M (v'k’:vk) has also the symmetry of M (v/Rk":v, Rk)=M (v'k’:vK) as mentioned .
in §2. Therefore, from these symmetries, the k integrations over the B.Z can be carried
out over one basic section of the B. Z containing only (1/48) of the volume of the B.Z.
However, because the shape of the basic section is the intractable pentahedron, we
integrate over the more tractable tetrahedron, in which k vector is limited within 0<k ,
= ky=kx=2rn/a and a is the next nearest neighbor distance in the f.c.c. lattice. This
tetrahedron can be constructed from the two basic sections mentined above, in which
one section is translated by the appropriate reciprocal lattice vector from the B.Z, and '
therefore its volume is 1/24 of B.Z. Thus, we get

r@=F AP MO kRGeS i) o

V', k+RQ+K ™ Ly

where R takes all rotations in On and the factor 1/2 is necessary because the volume

of tetrahedron is twice of the basic section. The numerical integrations with respect to
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k will be carried out by the Rath-Freeman method [12], in which the above mentined
tetrahedron is divided into a large number of small tetrahedrons and the band energy
is approximated by the linear interpolated formula in each small tetrahedron. The
matrix element is replaced by its value at the center of gravity of the small tetrahedron.
Furthermore, when the vector k+RQ@+K in (9) is outside the original tetrahedron, the
matrix element can be calculated using B,,, in its tetrahedron from (4).

4. Numerical results and discussions

The band structure used in the numerical calculation of X(Q)is shown in fig.1. This
is calculated in the tight binding model [8—9], in which the two center integrals are
determined so as to fit the APW band calculation of the semimetallic Lap[7]. However,
their values are modified a little so that its band structure can denotes the semiconductor
with the almost zero band gap. For the details of the band structure, see the references
[1, 6—7]). The Fermi energy is chosen to be Er=0.2645 Ryd, and then the Fermi level
stands between the third and the fourth bands.

Let us denote the susceptibility due to the scattering from the v—th band to the v'—th
band by X ,,'(Q@). X,,'(Q) is calculated numerically by means of the method mentioned

Band Energy(Ryd)
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Fig.1. The band structure due to the tight binding model is shown for the

//’wN\ )
V

semiconducting material. The values of two center integrals measured in unit
of Rydberg are as follows : p,=0.232, (ppo )=0.015, (ppz)=-0.0035, d;=0.3933,
d,=0.6198, (dda)= —0.02059, (ddx)=0.02034, (ddd)=-0.004969, (pds)=0. 1188, (pdz)=
—0.04896.
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Fig. 2. The susceptibilities ¥,’(Q)/C obtained summing the contributions from the
all valence bands are shown for v‘=4,5 and 6, and they are measured in unit
of Rydberg™!. Black, open circles and triangles denote the x4 (Q)/C, 15 (@)/C
and X6 (Q)/C, respectively.

X(Q)/C (Ryd™ J@)IC (Ryd™

5.5 0.5

5.0 0

4.5 | \-0.5
v |

4.0

X ZWQaQ LAT A X K 2 T

Fig. 3. The total susceptibility ¥ (@)/C measured in unit of Rydberg! is shown. Black
circles denote the numerical datas of ¥ (Q)/C calculated numerically. The solid
curve is the susceptibility calculated from the Fourier interpolated formula
using Jn in the case of d=6.
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in §3 for 1sv<3 and 4= v '<6. 2, (Q) for V' =7 are neglected because the band
structure shown in fig.1 is not fitted to those due to the APW method for LaP for v'=7.
They are calculated for the 21 Q-vectors in B.Z, which are on the 4—, the A—, and the
X —axes, and on the W point. Let us denote the contribution due to the scattering from
the valence bands to v'—band by x,’ (Q), that is, X’ (Q)=y§‘l X,,(@). 2,(Q) for v'=
4,5 and 6 are shown in fig.2, in which the normalization constant C is given by C=2I%/
Na? because the band energy and the wave vector in (9) are measured in unit of Rydberg
and 2=a/a, respectively. As easily seen in fig.2, X4(Q) has the maximum at the I'—point
giving the ferromagnetic ordering. This is contradictory to the previous result in ref. [1]
due to the simplified band structure. The reason can not be understood now. Perhaps,
it seems that it is due to the complicated effect of the matrix element [14]. X5(Q) and
X6 (@) have the almost similar dispersions although that of X6(Q) is larger. Furthermore,
they have the maximums at the X and the W points, respectively, stabilizing the
antiferromagnetic states. Thus, the fact that X5 (Q) and ¢ (Q) also have the large
dispersion means that we can not ignore the scatterings to the higher conduction bands
while the scatterings to the conduction band immediately above the Fermi level are of
course important. These scatterings to the higher conduction bands seems to be particularly
important when the matrix element effect is taken into account. This can be checked by
calculating X,’(Q) in the constant matrix element case [14], in which the wave vector
dependence of the matrix element is ignored. Note that for the same reason the scatterings
from the valence bands sufficiently below the Fermi level are also important.

The total susceptibility 2(Q) given by u,é"‘ Z,'(Q) is indicated in fig.3. Strangely,
this total X(Q) has the very similar dispersion to the result given in ref. [1]. Fig.3
gives the antiferromagnetic orderings as the most stable states, because X (@) have the
maximum with almost equal amplitude on the Z— axis. However, at this stage, we can
not distinctly say about the spin ordering. The RKKY interactions Jn can be determined
using the all numerical datas of X(Q) by means of the least squares method,
in which the Fourier transform is used as the interpolated formula. Jn are considered
to be the fitting parameter. When we use the parameters up to Ja, trend of convergence

-
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of Jn with increasing of d is shown in table 1. J. does not converge with increasing of
d. They show rather the oscillatory behaviors and for larger n this characteristics is
striking. However, for 5=< d= 10, the numerical datas of X (@) can be very well fitted
by uses of Jan thus determined as easily seen in fig.3. For d< 4, agreement between both
' cases is not so good. For d=11, clearly the physically meaningless solution is obtained,
which means that independent more numerical datas of ¥(Q) are necessary for this case.

Fortunately, Jo, which is a selfenergy, has almost the constant value of Jo/C=4.95
Ryd". Therefore, we can get J(Q) by subtracting this J, from X (Q). The scale for the
J (@) is also shown in fig.3 on the right hand side. But, this J, may be too large
because it is predicted that its J (@) does not satisfy the sum rule %‘ J (@) =0.

The normalization constant C becomes to C=1%2/2 because of Na®=4 in the f.c.c
lattice. From the atomic spectra of Gd, the intra—atomic d—f Coulomb exchange integral
is obtained to be 1=1.46x10% K [15—17]. Therefore, we get C=1.066x10° K?. Using J(Q) in
fig.3 and this value of C, the comparable order of magnitude with experiments [13] for

the paramagnetic Curie and the Neel temperatures can be obtained. For example, 6, =
' —-49K and TN=15K. \

The calculation performed here is contradictory to the experimental fact for GAN that
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Table 1. Trend of convergence of Ja.n due to the least square method.
Values of Jo/C and Jo/C x103(Ryd ') (n= 1) are listed. d means that the fitting
paramezters up to Js are used.

d Jo Jy J2 J3 Ja Js Js J g Jg Jo Jio Ju
2 4.948 -51.8 0.63
3 4.939 —-47.8 1.55 -3.09
4 4,953 —-48.7 2.69 —2.24 -3.82
5 4.947 —47.0 4.25 -2.28 -3.56 -—1.76
6 4.946 —47.0 4.54 -2.23 -3.41 -1.80 -0.377
7 4.947 —47.3 3.98 —-1.72 —-3.27 -—1.49 -0.205 -0.412
8 4.945 —47.0 4.10 —-1.82 —-3.34 -1.74 -0.178 -0.363 0.717
9 4.954 —-47.4 3.60 —2.38 —-3.38 —1.03 -0.138 0.016 —0.756 -1.367
10 4.948 -47.3 3.63 —-1.55 —-3.34 —-1.30 -0.125 -0.383 0.364 -0.371 -0.379
11 12.016 —636. —1174 —1.54 —3.34 588. —0.125 -0.384 —1178 -589.4 -0.379 295.

the energies for the ferromagnetic and the antiferromagnetic states are close. As the
recent experiment [18] shows, GdN is the semimetal with the small amount of free
carriers. It is expected that existence of this free carrier strengthens the ferromagnetic
state [1]. The study of this carrier effect will be reported in a separate paper. X (Q) for
other pnictides, which are also the semimetal with about 0.1 free carriers per Gd [7,19],
are reported in a separate paper, too.

5. Conclusion

So far, we have considered the susceptibility using the band energy and the matrix
element due to the tight binding model and its analysis for the magnetic semiconductor
with a almost zero band gap. The followings are clarified :

(1) The scatterings from the valence bands to the sufficiently higher conduction bands
and from the sufficiently deeper valence bands to the conduction band, both are important.

(2) As a whole, the present calculation is accidently in agreement with the previous
result due to the simplified band model. But, in detail, both are not in agreement
because of the complicated matrix element effect.

(3) When Q vectors are chosen appropriately, using abot twenty numerical datas of

the susceptibility ¥ (@) the RKKY interactions and therefore J (@) can be determined
very well by means of the least squares method.
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