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Introduction

Let #; M — M’ be a Riemannian submersion. Let N’ be a submanifold of M’ and N =
ﬂ_l( N’). The re%ilailon between N and N’ is studied by H. B. Lawson [3] and R.H. Escobales
(1]. When M=S and M’'=CPn(c) is studied by K.Yano and M.Kon [8], 1. Naitoh and
M. Takeuchi [ 4] and others.

In this paper we will study that the relation between Nand N’ under the condition of
the integrability tensor A associated with the submersion.

1. Submersions

Let Mand M" be Riemannian manifolds of dimensions m +p and m respectively. By a
Riemannian submersion we mean a C* mapping 7;M — M’ such that 7 is of maximal
rank and 7, preserves the lengths of horizontal vectors ,i.e., vectors orthogonal to
the fiber # ' (y) for some y € M’.

Let X denote a tangent vector at x € M. Then X decomposes as ¥YX +& X, where ¥X
is tangent to the fiber through x and X is perpendicular to it. If X = X, it is called
a vertical vector;and if X =%X, it is called horizontal. Let V and V*denote Riemannian
connections of M and M’ respectively.

We define a integrability tensor A associated with the submersion. For any vector fields
E and F on M,

(1,1) AgF= UV (¥F) +¥Te (UF).
A is a (1,2) -tensor, and it has the following properties [ 6 ] :

(1) At each point, Ay 1is a skew-symmetric linear operator on the tangent space of
M and it reverses the horizontal and vertical subspaces.

2VAg =Ak -

(3) For horizontal vector fields, A has the alternation property A 4Y = —A (X.

We define a vector field X on M to be basic provided X is horizontal and 7 -related to
a vector field X,on M’ . Every vector field X4«on M’ has a unique horizontal lift X to M
and X is basic. And denote by X =h.1. (X,).

Throughout this paper, we assume that the fibers are totally geodesic in M.

LEMMA 1. [6]. If X and Y are basic vector fields on M, then ‘
W E(X,Y)=g%Xe, Yy)or,
(20 %[ X, Y] is the basic vector field corresponding to [ Xer Y1,
(3) & VY is the basic vector field corresponding toV*,,Y,, where e and g*are the
metrics of M and M’ respectizely. !

LEMMA 2. [6]. Let X and Y be horizontal vector fields and V is vertical vector field on
M. Then
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1) V X=%& VX,

@2 TV=AV+UT,V,

B VY =2V,Y+A,Y.

Furthermore, if X is basic , K[VVX =A,V. -

Denote by R the curvature tensor of M.The horizontal lift of the curvature tensor R*
of M’ will also be denoted by ﬁ*, explicitly, if h,, hy, h, h 4 are horizontal tangent vectors
to M, we set.

g (R% n2(hy) v h ) =g* (R snzx (hga), hyg)om
where h . = 7, (h,).

LAMMA 3.(6]. Let X, Y, Z and H be horizontal vector fields and V and W be vertical
vector fields, then
1 R(X, V.Y, W)=g ( (VyA)Y, W)+g( AV,A W),
@2 R(X, Y, Z V)y=g ( (V,A),Y, V),
@ R(X, Y, 2, H)=RX.Y, 2. H) - 28 (AY, A H) + & (AyZ AH) +g (AXAH).
For horizontal vector fields X, Y, Z and H on M we set
D(X,Y, 2 H)=—2g (ALY, A,H)+g (A,Z, AH)+g (AX, AyH).

PROPOSITION 4. Let 7 ;M—M’ be a Riemannian submersion with totally geodesic
fibers. Then we obtain following equations
(VeD) (X, Y,2 H)=-2g ( (VcA )Y, AH)-25 (AxY, (VcA)2H)
+g ( (VoA)Z, AxH) +8 (AvZ, (VcA)H)
+8 ( (VoA)X, AvH) +g(AX, (VcA)H)

where X, Y, Z, H and C are horizontal vector fields on M,
( ( VaR*) (X, Yao Zi, Hy) )
= (VR (X, Y, 2 H)+R(¥VeX, Y, 2, H) +R (X, VVcY, Z, H)
+R(X)Y, ¥YVeZ HY+R(X, Y, Z ¥VcH) - (VD) (X, Y, %, H)

where X4 Yy, Zs H, and Cy are tangent vector fields on M’ and X, Y, Z, H, C are their
horizontal lifts. Especially if M is a space of constant curvature, we obtain
(VD) (X, Y, 2, H)=0.
( (T*c4R*) (X4, Y, Zy Hy) om=(T.R) (X, Y, 2, H) =0.
Proof. From the following equations
C(D(X, Y, Z H))=-2g (Vc (AY), A,H) - 25 (AN, Vo (AH) )
+E(Ve(AZ), AH) +8 (AZ, Vo (AH))
+E (Ve (AX), AH)+T (A, X, Ve (AH)),
To(AY) = (TeA) Y + A5 xY +Ay(TcY)
we obtain .
(VD)X Y, 2, H)=C(D(X, Y, 2 H))-D(TVX, Y, 2, H)-D (X, VcY, 2, H)
~D(X, Y, VeZ, H)-D(X, Y, 2, TcH)
=—28((VcA) Y, A,H)-23 (ALY, (TcA),H)
+8 ((VeANZ, AH) +5 (AyZ, (VoA ) H)
+8((TeAX, AyH) +g (AX, (TcA)H).
Using LEMMA 1 and LEMMA 3 we see that
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((T*caR*) (X Ya. Ze, He))om
= (Cx(R*( X4, Ya, Zu, Ha))om = R*( T4 Xu, Ya, Zu, Ha) ) 7
"R*( K V C*Y*: Zy, Hy)o 7 '
R*( Xar Yi, v *cxZx, Hy)o @ _R*(X*, Y, Z*, * cxHy)o 7@
=C(~R*(X, Y, Z, H)) -R*(&V. X, Y, Z, H) - R¥ X, ¥VcY, Z, H)
- R*(X, Y, % VcZ, HY=R*(X, Y, Z, % VH)
=(VcR) (X, Y, 2, H)Y+R(VUVeX, Y, Z, HY+ R(X, YV.Y, Z, H)
+R(X, Y, UVcZ H)+R(X, Y, 2, VUV.H)- (VD) (X, Y, Z, H).
When M is a space of constant curvature c, we have ﬁ(X, Y )V =c (~g (V,Y) X—~g (V,X)
Y )=0. From A,Y is vertical, by Lemma 3 (2 ), we obtain~g ( (VCA) Y, AH)= ﬁ(X,Y,
C, AzH)=0. Therefore we obtain (¥cD) (X, Y, Z, H)=0. Since R (X, Y)Z=c(g(2,Y)
X -8 (Z X)Y), we obtain ( ( V% ,R*) (X4, Y4, Z4, Hy) )e 7=( UcR) (X, Y, Z, H) =0.
Q.E.D.
2. Submanifolds )

Let M be~a (2m +1) —dimensional regular Sasakian manifold with structre tensors
(¢, €, n, g) such that there exists a fibering 7 ;M — M/ £ = M’, where M’ denote the A
set of orbits of £ and is a real 2m — dimensional Kaehlerian manifold. This is asubmersion
with totally geodesic fibers. We denote by (J, g*) the Kaehlerian structure of M’.Then
we have

$X =h.1. (J Xy, T(X, Y)=g*X, Y,)e°r
for any vector fields X, and Y, on M’. Let V and V* denote the Riemannian connection
of M and M’ respectivery.

Let N be an (2n+1)—dimensional submanifold tangent vector field ¢ of M and N’
be an 2n-—dimensional submanifold of M’. We assume that the diagram

(*) = ™

i .
N- f M’ |

commutes. Let V and V* denote the Riemannian connections of N and N’ respectively.
For any vector fields X* and Y* of M’, we have
h. L ( Ve Yye) = v Y—ﬂ(VXY)E (7]
By LEMMA 2. (3) and h.1.( V*xaYs) =34 V,Y), for any horizontal vector fields X and
Y of M, we obtain ‘
AY =7 (TxY) § =g (VY. )6 =g (Y, ¢X) €. !
By LEMMA 2. (2) and Vx¢=-¢(X)and ¢ X is horizontal vector field of M, we obtain
AE =—9¢(X) XexM).
A (2n +1)—dimensional submanifold N of M is said to be invariant if the structure
vector field & is tangent to N everywhere on N and ¢X is tangent to N for any vector \
field X tangent to N a every point of N, that is, ¢ T,(N) C T,(N) for each xEN. A n- j
dimensional submanifold N of M is said to be totally real if ¢ T,(N) CT, (N Y- for l
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each xEN. When n=m + 1 we have that the structure vector field ¢ is tangent to N.Wesay
that a submanifold N of M is generic if ¢ Tx (N)* CT,(N) for each xEN.

We assume that submanifold N of M is invariant. Then, for any normal vector field B
of N and horizontal vector field X of N, we obtain

AX=-AB=-g (B, 6X)E=0.

We assume that the submanifold N of M is totally real. Then, for any horizontal

vector fields X and Y of N, we obtain
AY =g (Y, X) € =0.

We assume that the submanifold N of M is generic. Then, for any normal vector fields

B and C of N, we obtain
A,C=g (C, ¢B)¢ =0.

Let M and M° be Riemannian manifolds of dimensions m +p and m respectively.
Suppose now that N is an (n+p) — dimensional submanifold of M which respects
the submersion. That is, suppose there is a submersion «;N—N’whereN  isa submanifold
of M’ such that the diagram

NI f, MI

commutes and the immersion f is a diffeomorphism on the fibers. We assume that the fibers
are totally geodesic in M.

Let h be second fundamental form of the submanifold N. Let h’ be second fundamental
form of the submanifold N. Let g( V) and g*( V*) denote the induced metrics (connections)
of N and N’ respectively. Then the Gauss—Weingarten formuras are given by
(2.1) V,Y=VY+h(X, Y), V,E=-S.X+D,E, X, YE%(N), EE%'(N).
where g(SgX, Y)=g(h (X, Y),E) and D is the connection in the normal bundle T(N)‘L.
Note that the normal space is always horizontal. We set CgX =&Sg X where X is
tangent to N. Then we have the following equations
(2.2) SgX=CgX+ AgX, .

(2.3) SgV=DyE-V,E=DE-XV,E
where X and V are horizontal and vertical tangent vectors on N [1].

In the case A Y =0 where X and Y are horizontal vector fields of N,we have following
equations
(2.4) VY=V, Y+A,Y=h 1L V%,Y +h L h' (X,, Ye).
on the other hand, by the Gauss equation
(2.5) T¥=V,Y+h(X, Y).

Hence we obtain

(2.6) VyY=h.1. V¥, Y., h(X, Y)=h. 1. h" (X4,xY ).

For vertical vector field V of N and horizontal vector field X, by LEMMA 2 (2) and (2.1),
we have '

(2.7) ANV+VUT,V=h(X, V)+V,V.
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Since assumption AxY =0, we obtain g (AxV, Y)=-g(V, ALY )=0 where for any
horizontal vector field Y of N. Hence A4V is normal to N. Thus, by (2. 6)
(2.8) ANV=h(X, V) VeV =UT,V.
By LEMMA 2
TyX =%V X =A,V.
On the other hand, by (2, 8)
VyX=VyX+h (X, V)=V,X + A,V.
Therefore we obtain
(2.9) V,X =o0.
In (**), we assume that dim(fibers) =1. Since fibers are totally geodesic, we have
(2. 10) VeV =0 h(V, V)=o0.
Let L: be linear span of h (T ;(N), T; (N)) and L:xke)NL,,
For the second fundamental form h we define its covariant derivative Vh by
(Vh) (X, Y, Z)=Dyh (Y, Z)-h(VsY, Z)-h(Y, Vi7Z)

, we obtain

PROPOSITION 5. In (**), let M be a space of constant curvature and dim (M) =m +1
and dim(M)=m and fibers be totally geodesic. We assume AxY =0 where X and Y
are horizontal vector fields of N, and AzC =0 where C is normal vector of N and BEL.
Then h is parallel if and only if h’ is parallel.

Proof. Let X, Y and Z be horizontal vector fields and V be vertical vector field
of N. By_(2. 8), (2.9) and (2. 10), we obtain
(a) (Vh)(V,V,V)=Dyh(V, V)=-2n(V,V,V)=0
(b) (Vh)(XVV)—Dh(V V)-2h (V,V,V)=-2n( YT, V,V)=0.
Since A,;C=0, we obtain g(Ah(x,Y)V C)——g(V Ay xx,C) =
is tangent to N. On the other hand, we have following equations

v vh (X, Y)-—— hex,y)Y +Dyh (X, Y)
Vvh (X, Y)=
Thus, we have
(2, 11) Dyh(X, Y)=0.
By (2. 9) we have
(c) (Vh)(V, X, ¥Y)=Dh (X, Y)-h(VyX, Y)-h (X, V,Y)=Dyh (X, Y)=0.
Let D’ be the connection in the normal bundle T (N’ )'L.
By (2.6) and Dyh (Y, Z) =h.1. D', . h" (Yy, Zy), we have
(d) (Vh)(XYZ)—Dh(Y Z)-h(V YZ)—h(YVZ)
=ho L (D h" (Y, 2,) ~H(V*,,Y,.2,)
= h’ (Y*’ * *))
=h.1. (V*h’ )(X Zy).

Since M is a space of constant curvature,

0. Therefore A, 4 W

Awcx, oV

Vh is symmetric trilinear in.wvirture of the
Codazzi equation. Hence we have our assertion. Q.E,D

Let 7 ;S2™! — CP_(c) be the standard Riemannian submersion from a sphere [6].
Let J be the complex structure tensor on CP,(c) and (S?2™+*!, ¢, £, 7,¢ )bea standard
Sasakian manifold.

COROLLARY 6 [4]. Let N’ be a totally real submanifold of CP,(c), we set
N =n -I(N’'). Assume that the linear span N ! y(N") of h" (T,(N"), T,(N")) is
containd in J (T,(N")) for each y&N’'. Then h is parallel if and only if h’is parallel.
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v Proof. N is a totally real submanifold of S2m*! if and only if N’ is a totally
real submanifold of CPnh(c) [8]. Therefore AxY =0 where X andY is horizontal vector
fields of N. For horizontal vector field X, we have h. 1. (JX4) =¢ (X). The assumption
N' ,(N")CJ (Ty(N")) implies that Jh (X4, Y«) is tangent toN’. And hence,by (2.6 ),
\ é(h (X,Y)) is tangent to N. Therefore, for normal vector field C of N and BE L,
[ AsC= g (C, B) € =0. Q. E. D.
Let N be a submanifold of a Riemannian manifold M. For every zEN, let 0 ; M
— M denote the involutive isometry with the initial data 0;:(x) =% and (P s)sx (X +B)
=—-—X+B (XET:(N), B€T:(N)l). If we have p:(N)=N for all xEN, then we call
N a symmetric submanifold of M. If we have a neighborhood U and #:(U) = U for all

ZzEN, then we call N a locally symmetric submanifold of M.

LEMMA 7.(5]. Let N be a submanifold of Riemannian manifold M. If N
is a locally symmetric submanifold, then the second fundamental form of N is parallel.

LEMMA 8. [5]. Let N be a submanifold of Riemannian symmetric space M. Then N
is a locally symmetric submanifold if and only if N has the following two conditions ;

. W W

(1) the second fundamental form of N is parallel,
(2) for each point x&N, there exists totally geodesic submanifold P of M satisfying
xEP and T.(P)=T.(N)".

2 LEMMA 9.[5]. Let M be a Riemannian symmetric space and a space of constant
curvature. Then the submanifold N of M is a locally symmetric if and only if the second
fundamental form of N is parallel.

Using those LEMMAs and PROPOSITION 4, 5 we obtain following theorem.

THEOREM 10. In (* %), let M be complete and a space of constant curvature ¢ and
dim (M)=m + 1 and dim(M’)=m and fibers be totally geodesic. We assume AxY =0

-

where X and Y are horizontal vector fields of N, and AgC =0 where B and Cis normal
vector fields of N. Then N is a locally symmetric submanifold if and only if N’ is a

S TEmWER -

locally symmetric submanifold.

Proof. If N' is a locally symmetric submanifold, by LEMMA 17, the second
fundamental from of N’ is parallel. Since PROPOSITION 5, the second fundamental form
of N is parallel. From M is a space of constant curvature, M is a Riemannian locally
symmetric (NV“§=O). From those and M is complete, M is Riemannian symmetric space.
Therfore, by LEMMA 9, N is a locally symmetric submanifold.

TR TRy RN *

If N is a locally symmetric submanifold, the second fundamental form of N is
parallel. Therfore, by PROPOSITION 5, the second fundamental form of N'is parallel.
From PROPOSITION 4, M’ is a Riemannian locally symmetric space. If 7 ;M—M" is a
submersion and M is complete, then M’ and the fibers are also complete. Therefore M’
1s a Riemannian symmetric space. Since AgC=0 and M is a space of constant curvature

¢, we have
& (R*(B,, Co) Dy, Xy) © m =g (R*(B, C)D, X)=R*(X, D, B, C)
=R(X, D, B, C)-2g (AD, AyC)+g (ApB, AxC)+g (AsX, ApC)
=-g(R(B, C)X,D)=-g(c(3(X, C)B-g (X, B, D)=0,
where By, Cx« and Dx are normal vector fields of N’ and Xy ié ‘tangent vectore field

e YR
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of N’. Therefore we obtain ﬁ*(Ty(N')J', Ty(N')-L)Ty(N')J'CT,(N'~)'L. Therefore there
exists totally geodesic submanifold P such that T,(P)=T,(N')’L. Since LEMMA 8,N’ is
a locally symmetric submanifold.

Q. E. D.

COROLLARY 11. N’ be a generic submanifold of a complex projective space CP, with
constant holomorphic sectional curvature 4. If the second fundamental form of N'is
parallel, then N’ is a locally symmetric submanifold of CP,,.

Proof. In (%), we set M=S?™*1and M’'=CP,. By [9], if the second fundamental
form of N’ is parallel, then N’ is a totally real. From the second fundamental form
of N is parallel, N is a locally symmetric submanifold of $?™*! By THEOREM 10, N’
is a locally symmetric submanifold of CP,h.

Q. E. D.

Let ey, ...... , €n+q be an orthonormal basis in T:(N). The mean curvature vector
2 of N is defined to be #=

n+p (Trh), which is independent of the choice of a basis.
PROPOSITION 12. In (*%), let dim(M)=m+1 and dim (M’)=m and fibers be totally
geodesic. We assume AgC=0 where C is normal vector field of N and BEL. Then the
mean curvature vector # of N is parallel if and only if the mean curvature vector #’
of N’ is parallel.

Proof. If we take an orthonormal basis {e;4} in T,(N’). Then {e;, v} formes
an orthonormal basis in T:(N) (7 (x)=y), where v=V/g(V, V). By the definition of
the mean curvature vector and
(2. 10), we have

hol (#)=th L (Trh ) == h L (£ h' (e, e,))

i=1

1 n
=—n-'(2h(e,,e|)+h(v,v))=—1— Trh:n_ﬂ_u'
i=1 n n

By the equation Dxh(Y,Z)=h.1. D'y 4h'(Y,, Z,), we obtain

n
n+1

h.l. ( Dy’ )=Dyu.

By (2. 11), we obtain

- 1 __1 n
Dyu=Dyvlg77 Trh)—rﬂi{leh(ei’ei)=0.
Q. E. D.
We now define the curvature tensor R* of the normal bundle of N by

(2, 12) R (X, Y)B=D,DyB~DyD,B-Dyy y,B
where X and Y are tangent vector fields on N and Bis normal vector field on N. If RJ-
vanishes identically, then the normal connection of N is said to be flat.

In (*x), let R* and R'* (D and D’) denote the curvature tensors (the connections)
of normal bundle of N and N’ respectively. We have the following Weigarten formulas;

V*x* By=—SB% Xs+Dxx Bx, VXB:‘_SBX"’DxB,

where X, is tangent vector field on N’ and B, is normal vector field on N’ and h. 1.
(X4)=X, h.1l.(By)=B. On the other hand, we have h.1.(V*X*B*)=MVXB=VXB“AXB'

HHEEEMREER2S
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Thus we have
(2.13) h.l. (S« X« )=Ss X+ AxB and h.l. (D'xs« Bx) =DxB.
Let X and Y be horizontal vector fields on N and B and C be normal vector fields on
N. Then (2. 13) implies
h.l. (D% Dyx Bx)=DxDyB, h.1l. (Dyx D%4« Bs«)=DyDxB.
Since h. 1. [ X4, Y« 1=[X, Y]—-2AY, we find
h. 1. (D{xs v%1 Bx)=Dix, iB=2D,_yB.
From these equations we have
(2, 14) g*(R™ (X4 Yu)By, Coom=g(R (X, Y)B,C)+2g(Dys,vB, C).

PROPOSITION 13. In (*x), let fibers be totally geodesic. We assume AzC=0 where B
and C is normal vector fields on N. Then the normal connection of N is flat if and only
if the normal connection of N’ is flat.

Proof. Let X and Y be horizontal vector fields on N and V be vertical vector
field on N and B and C be normal vector fields on N. Then, by E(A BV,C)-_‘“E(V,
AgC)=0, AgV is tangent to N. Frome the following equations;

VyB=-S,;V+DB and VyB= %V ,B=A,V,
we obtain DyB=0. From AY is vertical, we have
(2.15) g*R™(X4 Ys)Bs C=g(R™(X, Y)B,C).
The equation implies that if the normal connection of N is flat then the normal
connection of N’ is flat. Since DyB=0, we obtain DyDyB=0 and D4DyB=0.Since [X,V]
is vertical, we have Dy, v;B=0. Therefore we obtain R*(X,V)B=0. From the integrability
of the vertical distribution, for vertical vector fields V and W, [V, W]is vertical. Therefore
we obtain R™Y(V, W)B=0. Thus, by (2.15), if the normal connection of N’ is flat

then the normal connection of N is flat. Q. E.D.

|
EXAMPLE [8]. Let 7;S*™" !-=CP,(c) be the standard Riemannian submersion. We set 1
N=S8! (r,)x...... XxS'(rme,) where r;? +...... +Tme; 2=1. Then N isa generic and a totally
real submanifold. These are AgC=0and A,Y=0. Here N has parallel second fundamental
|
|

form and flat normal connection.
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