モルタル及びコンクリートの剪断強度と強度分布の均一性係数

= 圧裂引張及び圧縮試験による剪断強度の推定=

長谷川 武 司·鎌 田 英 樹·小 林 浩\*

Shear Strength and Its Distribution Function on Concrete and Mortar Sample derived from Radial and Axial Compression Test

Takeshi HASEGAWA, Hideki KAMADA and Hiroshi KOBAYASHI

#### Abstract

Experimental observations for shear strength on concrete and mortar samples show that values range between 6 and 10 MPa and coefficients of uniformity derived from these distribution lie between 9 and 13. Shear strength may be related with the coefficient of uniformity and may give an explanation on stress drop distribution of acoustic emissions.

### 1. はじめに

モルタルやコンクリートのアコースティックエミ ッション(AE)特性に関する一連の実験(長谷川 ら、1980.1983) により、AE振幅分布のm値は 低軸圧で大きく、軸圧の上昇に伴って小さくなるこ と、AE波スペクトルの卓越周波数は破壊強度の約 80%付近で一度上昇した後、軸圧の上昇に伴い低下 し破壊に至ること、カイザー効果が認められること 等の結果を得た。一方、長谷川(1985)は、モル タルの実験データを用い、AEの発生が主として剪 断破壊によるものと考え、AE発生時の応力降下量 を求め0.002~3MPaの範囲にあること、その分 布から得られるワイブルの均一性係数が5~9程度 であることを示した。応力降下量はAE発生時に於け る偏差応力と平均応力の差であるため、局所的応力 集中があれば、巨視的な剪断強度以下になる必然性 はないと考えられる。しかし、破壊の爆発的進行が 最弱リンクによって決定されるならば、平均的には 剪断強度以下に求められるであろう。また、応力降 下量の分布より得られた均一性係数が強度試験より 得られるものと、どう関連しているかについて検討 が必要である。そこで本研究では、モルタル及びコ ンクリート供試体について圧裂引張試験および圧縮 試験を行い、剪断強度と均一性係数を推定し応力降 下量との比較を行った。又、この実験の際に発生する

\* 機械工業科 第14期卒業生

昭和 61 年 2 月

AEの振幅分布およびカイザー効果についても調べた。

## 2. 実験方法

岩石試料では、試料製作や供試体にかける荷重を 均等にすることの困難なことから一軸引張試験で信 頼度のおけるデータを得ることが難しい。この実験 上の困難を避けるために、円板形の岩石試料を作成 し、上下から圧縮する圧裂引張試験が行われる。こ の場合、円板の内部には中心線にそって左右に分離 しようとする引張応力が生じ、最終的にこの応力に よって引張破壊を起す。破断したときの応力すなわ ち引張強度 S<sub>Pt</sub>は、載荷荷重P,円板の半径R,円 板の厚みTに対して

$$S_{Pt} = P \neq \pi R T \tag{1}$$

で与えられる。ところで、力が加えられる部分が変 形して理論的な集中荷重でなく幅をもった面荷重と なる場合には、(1)式で計算される引張強度に誤差を 生ずる。淡路ら(1978 a、b)は、圧裂引張試験 法における試料の応力解析を行い、これに基礎をお いて円弧状の内面を有する円弧型圧子を用いる新し い圧裂引張試験法を提案した。この方法では、円弧 型圧子の内径を適当に選ぶことによって接触部での くずれを避けることができ、かつ接触部の影響は次 式(2)で表わされるように簡単な補正を施すのみでよ い。すなわち、円弧型圧子を用いた圧裂引張試験に 長谷川 武 司・鎌 田 英 樹・小 林 浩

おいて円柱断面中央の最大引張応力S<sub>ht</sub>は,試料と 圧子の接触幅の1/2であるbに対して

Sht= $\{1-1, 15(b/R)^2 + 0.22(b/R)^3\}$  Spt (2)

のように b / Rの関数として表すことができる。淡路ら(1978 b)によれば b / R=0.27以上で圧裂 引張強度は一軸引張強度と良好な一致を示しており 我々の実験もこの数値を採用し図1に示す円弧型圧 子によって行なわれた。

圧裂引張試験用の供試体は、半径5cm、長さ20cm の型枠を用いて打ち込まれたモルタル及びコンクリ ートを半分に切断したものである。この供試体の水 ーセメント比は40%、砂ーセメント比は1.72であり、 打ち込み後120日間の水中養生を経て実験に供され た。載荷荷重は、改造された手動式コンクリート試 験機を用い、約60KPa/minの割合で引張応力 が上昇するようにした。

圧裂引張試験では、それぞれ5個の供試体を用いたが、そのうち一つの供試体については3回の載荷を行ない、AE特性及び歪分布を調べ、他の供試体については強度試験のみを行った。ところで剪断強度 S。は次の式

$$S_{s} = S_{c} \cdot S_{t} / 2\sqrt{S_{t} (S_{c} - 3S_{t})}$$
(3)

で示されるように、圧裂引張強度 $S_t$ と圧縮強度 $S_c$ によって算出される(山口・西松:1977)。このため、圧縮試験を同一サンプルについて行ない $S_c$ を求め $S_s$ を決めた。

A E 波の測定系は、長谷川ら(1983)と同じ仕様である。ただし、今回は振幅分布に関しコンパレ ーターを多数並べた計数器に依る方法をとらず、山本ら(1977)に従い、直線検波及びパルス化を行ったAE信号をフォトコーダーに記録し、これを読み取った。この方法はノイズとシグナルの弁別比を上げる為に役だった。尚、フォトコーダーの記録紙上で1 mmは、AEセンサー出力の0.2 mv に相当する。

#### 3. 実験結果

供試体表面で計測された歪のデータは、図2のようになった。図で、左が荷重中心線方向の歪、右が これと直交する歪である。歪ゲージは供試体のほぼ 中心に接着されており、引張応力が圧縮応力の1/ 3になる(山口・西松、1977)はずで、この結果は これをほぼ満たすデータになっている。しかし、詳



図1 円孤型圧子の寸法。単位 dmm

細に検討すると,引張方向の歪の変化は圧縮方向と 比べ必ずしも一様ではなく,載荷の状態や歪の測定 法など検討の余地があるものと思われる。

E裂引張強度, 圧縮強度について得られた値は表 のようになった。載荷の途中で接触部の崩れが発生 しコンクリートは4例, モルタルは3例の剪断強度 が求められ, 6~10MPaとなった。 E裂引張強度 に関しコンクリート, モルタルの両者に顕著な違い はないが, モルタルの圧縮強度が大きく剪断強度の 値に系統的に反映されている。この実験で得られた コンクリート及びモルタルの圧裂引張強度 3~4 MPa は通常引用される値よりもやや大きい。これ は、コンクリートやモルタルを打ち込んだ後の水中 養生期間が長く, 十分に固結した為と思われる。同 じことは圧縮強度についても見られる。

淡路ら(1978a)は均一性係数 ν が、変動係数( 母標準偏差/母平均) C<sub>v</sub>と次の式

$$C_{v} = \sqrt{2\nu\Gamma(2/\nu)/\Gamma^{2}(1/\nu) - 1)}$$
 (5)

によって表されることを用い、 C<sub>v</sub>より v を図式的 に求める方法を示した。剪断強度の C<sub>v</sub>は、コンク

秋田高専研究紀要第 21 号

# 

リート13%, モルタル9%であり, 淡路ら(1978 a)のチャートから均一性係数 νを決めると, それ ぞれ9,13となった。サンプル数は少ないが他の研 究による値(山口・西松,1977)と大差がなく, A Eの応力降下量分布より求められた値にも近い。

AE計数率を図3に示す。ここで白丸は初載荷, 4角形は再載荷,黒丸は破壊に至る再々載荷である。 モルタル及びコンクリートの何れにも、カイザー効 果とみられる履歴応力値が,明瞭に認められる。と ころで,コンクリートとモルタルではAE発生率に 大きな差がありAEの発生機構が骨材の粒径に依存 している事を示唆するものと考えられる。

次に、振幅分布は記録紙上の読取値(mm)に対す る累積度数で表し図4に示した。この分布より求め られる石本一飯田のm値は、宇津(1965)の式

 $m = N \log e / (\Sigma \log a_i - N \log a_{min}) + 1 \quad (4)$ 

によった。図4の分布は0.6 muよりほぼ直線状であり、amin = 0.6 mu とした。計算によると、コンクリートのm値は初載荷,再載荷時及び再々載荷時について4.9,4.4,3.3となり、モルタルでは再載荷及び再々載荷時について2.5,1.7 がそれぞれ得



昭和 61 年2月

長谷川 武 司・鎌 田 英 樹・小 林 浩



図3 AE計数率と引張応力の関係 白丸は初載荷、四角形は再載荷、黒丸は再々載荷に相当する。



秋田高専研究紀要第 21 号

表 コンクリート、モルタルの圧裂引張強度、圧縮強度および(3)式に基く剪断強度。単位はMPa.

|       | サンプル番号         | 1    | 2    | 3   | 4   | 5   | 平均   |
|-------|----------------|------|------|-----|-----|-----|------|
| コレクリト | <b>圧裂引張強度</b>  | 4.0  | 3. 5 | 3.2 | 3.1 | 3.2 | 3.4  |
|       | <b>圧 縮 強 度</b> | 50   | 42   |     | 31  | 52  | 44   |
|       | 剪断強度           | 8.1  | 7.0  | -   | 5.9 | 7.1 | 7.0  |
| モルタル  | <b>圧裂引張強度</b>  | 4.2  | 2.9  | 3.4 | 3.5 | 3.5 | 3. 5 |
|       | <b>圧 縮 強 度</b> | 80   | 87   | 83  | —   | ·   | 83   |
|       | 剪断強度           | 10.0 | 8.4  | 9.0 |     | _   | 9.1  |

られた。コンクリートのm値が岩石供試体によるA Eや、自然地震と比べ際立って大きいことが特徴的 であり、応力または構造の不均質性がコンクリート の場合大きいものと考えられる。一方、破壊応力値 まで載荷した再々載荷時のm値が、それ以前の値よ りも小さくなる傾向はこの実験でも認められたと言 える。

### 4. 議論

A E 波の応力降下量に関する長谷川(1985)の結 果では、分布が 0.002~3 MP a の範囲にあり、平 均で 0.5 MPa と求められている。これらの値は今回 得られた剪断強度に対し、最大で50%、平均的には 約10%の大きさしかない。即ち、AE発生の場に於 ける平均応力を剪断強度に相当すると考えるならば 応力集中による偏差応力値は平均で剪断強度の10% 増と言える。Yamamoto(1981)によれば、巨 視的破壊強度付近で岩石試料内微小クラックの破壊 強度分布はワイブル分布より僅かにずれている。 Yamamoto (1981) は、これをクラック周辺の応 力集中に依るとし、この効果が高々20%以内と見積 った。ところで、AEは載荷された供試体に内在す る微小クラック周辺で応力集中が起り、剪断強度を 越える偏差応力値になった状態で誘発されやすくな る。このAE発生メカニズムをYamamoto(1981) に従って解釈すると、偏差応力値は剪断強度に対し 平均で20%程度増加すべきであることを示し、前述 の応力降下量及び剪断強度の観測事実は、これを裏 付けるものであろう。

前節では、少数例の剪断強度より均一性係数を求 め、他の研究による値と類似であることを見いだし た。分布型を論ずる場合、通常は十分に多数のデー タによるべきであるから、前節の結果は偶然による のかもしれない。しかし、剪断強度には0を越える 下限が存在し、且つ無限大の強度も有り得ないので ワイブル分布又はこれに類する分布が先験的に判明 していることになる。かくして、淡路ら(1978a) に従った解析値は、剪断強度のデータがワイブル分 布であると仮定し当はめを行ったものと解釈され、 少数例にかかわらず比較的妥当な結果を得たと考え られる。ここで得た均一性係数は壊れにくさの指標 となっており、剪断強度の大小との相関が見られる。 また、AEの応力降下量分布から得られた均一性係 数が剪断強度分布のそれと同じ程度の大きさを示す こと。圧縮強度と均一性係数の相関も剪断強度と同 様であること(長谷川, 1984)から,両者が同じ物理 的内容を持つと期待される。

5. おわりに

本文では、コンクリート及びモルタル供試体の圧 裂引張試験による引張強度と圧縮試験による圧縮強 度から剪断強度を求めること、その分布関数をワイ ブル分布したときの均一性係数を求めることについ て検討した。その結果、剪断強度は6~10MPa、均 一性係数は9~13であることが分った。又、剪断強 度と均一性係数の間には正の相関が存在するらしい こと、応力降下量の分布より得られた均一性係数が 前述のそれと同等であるらしいことも判明した。今 後は、強度分布とAE特性の相方にわたるデータ蓄 積及び理論面での研究を行い、均一性係数を物理的 に解明していくつもりである。

本研究の遂行に当って,東北大学理学部の鈴木先 生,高木先生,平澤先生には絶えず励ましを頂きま した。供試体の製作に当って本校土木工学科の諸先 生には大変御世話になりました。記して深く感謝致 します。

# 参考文献

淡路英夫・佐藤千之助 1978a, ヘルツの接触圧を 考慮した圧裂引張応力, 材料, 第27巻, Na 295,

昭和 61 年2月

- 71 -

- 72 -

長谷川 武 司・鎌 田 英 樹・小 林 浩

1 1

336 - 341.

漆路英夫・佐藤千之助 1978 ,円弧型圧子による 圧裂引張試験法の検討,材料,第27巻,Na 295, 342 - 348.

長谷川武司・藤嶋幸成・武藤正文 1980., モルタル およびコンクリートの一軸圧縮により発生する縮小 破壊音について(1),秋田高専研究紀要,Na15.27-34

長谷川武司・伊藤哲也・長岡信一 1983 モルタル およびコンクリートの一軸圧縮により発生する微小 破壊音について(Ⅲ),秋田高専研究紀要,№18. 112-118.

長谷川武司 1984, 圧縮応力下にある岩石のアコー スティックエミッション特性 一地震学的手法によ る応力降下量の分布について一,第6回岩の力学国 内シンポジウム講演論文集,19-23. 長谷川武司 1985. 応力降下量の分布について一微 小地震およびAEの場合ー,地震学会秋季大会講演 予稿集(投稿中)

宇津徳治 1965. 地震の規模別度数の統計式 logN = a - bMの係数 bを求める一方法,北大地球 物理報告, № 13.99 - 103.

山本清彦・楠瀬勤一郎・平澤朋郎 1977.繰り返し 軸応力下で岩石に発生する微小破壊のm値, 地震第 2集, 第30巻, 477 - 486.

Yamamoto, K. 1981.

Theoretical determination of effective elastic constants of composite and its application to seismology,東北大学理学部博士論文.

山口梅太郎・西松裕一 1977. 岩石力学入門(第 2版),東京大学出版会.