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Numerical Analyses of the Molecular Dynamics

in the Mass Ratio—Energy Plane for the Classical Morse System
with Two Degrees of Freedom

Akira NARITA

The periodic orbits and the fixed points in the surfaces of section are analyzed numerically in the
mass ratio-energy plane for the Morse system with two degrees of freedom. They are survivals of those
in the harmonic limit and can be identified by the same rational rotation numbers as in this limit, and the
presence regions of them spread with mass ratio in increasing energy. These results can explain the mass
ratio dependence of bifurcation patterns showed by Matsushita and Terasaka, and are very closely con-
nected with the KAM theorem.

|. Introduction

The molecular dynamics in the linear symmetrical triatomic molecules of CXj type such as CO; has
been studied thus far by many authors[1-6]. The sum of two Morse potentials, one for each C—X bond,
has been assumed as the total potential energy. The Hamiltonian describing the intramolecular vibrations
of this CXz type molecule is given by the equations[3],
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where K=(internal kinetic energy), V=(total potential energy), mi=(mass of X—atom), mz=(mass of
C—atom), ri=(displacement from the equilibrium bond distance), a=(scale parameter), D=(dissociation
energy of C—X bond) and t;=dr;i /dt (t : time). This model has two parameters, mass ratio dependent
parameter y and energy E. The y values for some molecules are as follows, y=0.4673 for NzO, y=0.5714
for COz, y=0.5968 for BO; and y=0.7273 for CS,.

More recently, for this model system, Matsushita and Terasaka [2] showed the pattern changes in
Poincaré surfaces of section as a function of 7, de to bifurcations of various fixed points from the central
island [18]. Furthermore, they plotted the relative area of the central islands to the whole region as func-
tions of y assuming that the region except the central islands are chaotic. The plots .showed that the
r-dependence of the area is oscillating. These are very interesting results. Particularly, the area is almost
zero at y=0.263 for E=D because of the 3:1 resonance [7]. At this 7, the 3—fixed points degenerate to
the central 1—fixed point. From this situation, the almost complete ergodic behaviour can be seen at
y=0.263.

My main purpose is to clarify the origin of the pattern changes in the Poincaré surfaces of section

mentioned above. I will proceed by considering the modifications of the periodic orbits in the harmonic
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limit for E—0, due to the nonlinear effect of the present Morse potential. The calculations will be carried
out numerically based on the model given by egs. (1)—(4), as will be described in the following sections.

2. Equations of motion

In egs. (2)—(3), introducing the dimensionless variables, x=a(r; +r2), y=a(r1—rz) and r=a[2D(2m; +
mz)/m1(m; +mg)]12t, we can get the equations,

K
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V=2— 4exp( — X/Z)Cosh(y/z) + 2exp( — X)cosh(y)' ................................................ (6)

where px and p, are momentums conjugate to x and y, respetively, and D is adopted as energy unit (D=1).
The equations of motion can be easily derived from egs. (5) and (6),

).(=px/(1+')’), §’=py/(l_)’), ........................................................................... )
bx = — ZCXp( — x/Z)Cosh(y/Z) + 2exp( — X)cosh(y), ................................................ (8)
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where .= ;—r. This system is separable for y=0, as easily seen from eqs. (2) and (3) [2]. The solution
for y=0 is given by the equation,

ri=a"Un[Ai +Bicos(wiz+ ¢i)], [BiZ=Ai(Ai—1), wif=Ai71].  coeerverriniiiiii (10)

where A; and ¢ are integral constants. This system is also separable for y=1[2]. We get py=0 for y=1.
This leads to y=0 or exp(—x/2)cosh(y/2)=1/2 from eq. (9). The former gives the Thiele—Wilson solution
[3], and the latter gives the solution,

el {sinz(m+ #) lo=(1—E)2/2 for E<1]
FPO=Z7 | sinhHwe+ ¢) [w=E—1)12/2 for E>1].

The present system can not be separable for 0< y<1[2].

The second and the third order terms of the present Morse potential V agrees with the harmonic and
the anti—Hénon—Heiles type potentials [8], respectively. In the harmonic limit, wi=(1+7¥)"12 and w2=
(1— 7712 are frequencies. The rotation number «[9] in this limit is given by the equation,

a=w1/o2=[1=7)/A+ P2 0<a<1). oo 12)

The equations of motion given by egs. (7)—(9) were numerically integrated by means of the RKG
method. The accuracies in numerical calculations were checked by comparing the energy given at the
first step of iteration with that obtained at the last step of it. Errors in both energies were less than 0.5%.
All initial values were taken on the equipotential surface, since the Poincaré surfaces of section (y=0 and
py>0) can be completely filled with traverses of the phase curves obtained by moving them along it. The
numerical results obtained in this way will be described in later sections.

3. Periodic orbits

The trajectories in the harmonic system are defined by the equation x=Ajcosaz and y = Azcos(z+ ¢),
where A; and ¢ are integral constants. Note that « is defined by eq. (12) and ¢ is the phase difference.
The trajectory identified by « and ¢ will be represented by H(a, ¢) below. The properties of H(a, ¢) are
well known[10], and they have been referred to as the Lissajous figures.
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Since the second order term in the pre- 1{'0 o[ e
sent Morse potential agrees with the har- X
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fig.1 for some rational a. In fig.1, E=04is 00 I
selected and y values are calculated from eq. o} vorm v} yerres
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odd m, can survive. However, it should be ,
a=2/5

10di 1 i h) a=
noted that these periodic orbits are distorted Lot ¢ 1o es1/3
from those in the harmonic system because I '
of the nonlinear effect of the Morse potential. o-or °'°_
Only particular initial value can give the o r=21/29 e

periodic orbits shown in fig.1. However, the = 0 1.0 x
problem obtainig the initial value for the

periodic orbit identified by « and 4 is not Fig.1 Survivals of the periodic orbits in the harmonic

referred here. These periodic orbits are sta-  limit for some rational rotation numbers a=m/n. « is re-
ble concerning the slight shift of the initial  latad to y by eq. (12). The most outer boundary in each
value. Then they become fat and change figure is the equipotential curve for E=0.4. For odd m,
into the periodic tube[11]. In fact, these give  the solid and the dashed lines show the periodic orbits
the elliptic fixed points in the x-px Poincaré  identified by ¢=0 and ¢= »/m, respectively.

surfaces of section, and the periodic tubes

give the islands of the fixed peints[1]. The survived periodic orbit characterized by rational o{=m/n) with
even m gives the n-elliptic fixed points, as easily seen from fig.1. For odd m, because there are two stably
survived periodic orbits corresponding to ¢=0 and z/m, and each of them gives the n-elliptic fixed points,
they totaly give the 2n-elliptic fixed points. Note that « is the average rotation number.

The numerical calculations furthermore clarified that H(m/n, »/m) for even m and H(m/n, »/2m) for
odd m can survive. However, because they are unstable concerning the slight change of the initial value,
they give the k—hyperbolic fixed points (k=n for even m and k=2n for cdd m) in the x—p, surfaces of
section. It should be emphasized that the 3 : 1 resonance can be understood as transition of the phase
difference for the periodic orbit identified by ¢=2/3 from ¢=0 to ¢ =x/2, due to the instability of the
orbit [2]. It should be noted that the periodic orbit corresponding to A;=0 and A220 in the harmonic
system can also survive. This orbit is stable concerning the slight change of the initial value and gives the
central 1—fixed point [1, 2]. The periodic orbit corresponding to A;+0 and A2=0 can also exist, while
unstable concerning the initial value, and gives the boundary in the x—px surfaces of section. This will be
referred to as the Thiele—Wilson mode[1-3].

The reason that E=0.4 is chosen in fig.1 is that this energy is convienient for serching the survivals
of H(m/n, ¢) because of no visually chaotic motions. We reported for CO, molecule that visually chaotic
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Fig.2 Presence regions of the representative 1
periodic orbits identified by the rational rotation
numbers a«=1, 4/5, 2/3, 1/2 and 2/5 in the y-E R
plane. Serching the right boundary in each region
numerically is very difficult for E>0.7 with excep-
tion of @=1 because of abundant chaotic motions. 8
Then, very small interval of y must be taken (Ay=
10-%). The predicted right boundary curves are N
shown by the dashed lines, because existences of
the periodic orbits could not be verified there. Note
that the islands around each elliptic fixed point be- .6
come abruptly small by the slight increase of y
from the left boundaries for E>07. The 3:1res- E |
onance can occur on the dot dashed line. *See the
text about @ *
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motions can be observed for E>05[1]. Ac- -
cording to the numerical calculations performed =1
now, the energy at which chaotic motions begin 2
visually does not almost depends on y except for :
y=0and y=1, and is Ex0.5. This result is similar

to that by Casati and Ford[12]. Note that the cha- -

otic motions are abundant particularly near the

boundary in the x-px surfaces of section, for E>0.5 , 1
0.2 0 8 1

4. Separations of the fixed points from the central island

Let us denote y calculated from eq. (12) for e=m/n by ¥a.m. Does the periodic orbit M(m/n, ¢) also
exist for slightly shifted y from 7. ? M(m/n, ¢) is the periodic orbit in the present Morse system, and it
is the survival of H(m/n, ¢), where ¢=0, »/m for even m and ¢=0, z/m, »/2m for odd m. Firstly, this
question will be solved. Secondly, the origin for the y-dependence of the bifurcation showed by Matsus-
hita and Terasaka will be considered.

Numerical calculations showed that M(m/n, ¢) can also exist for slight change of y from yam. That
is, the initial value giving the M (m/n, ¢) can be serched for a range of y including yam The presence
region of M(m/n, ¢) in the y-E plane is shown in fig.2 for some rational rotation numbers. This figure
shows that the presence region of M (m/n, ¢) spreads concerning y in increasing E. This figure further-
more shows that M (m/n, ¢) exists until the two body dissociation threshold (E=1), while the islands of
each elliptic fixed points become small because of development of chaotic motions in the vicinity of it [1,
2]. In fig.2, the presence region of M(m/n, ¢) are not shown for larger denominators of m/n, because the
spread concerning v in increasing energy is small.

Let us increase vy for a fixed E. When y crosses the left boundary for the presence region of M(m/n,

¢) in fig.2, an appearence of it begins. Then, in the x-px surfaces of section, the k-fixed points with .the
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elliptic or the hyperbolic characters due to M(m/n, ¢) (k=n for even m and k=2n for odd m) separate
from the central island. On the left boundary curve, M(m/n, ¢) is degenerate to the periodic orbit giving
the central 1-fixed point. With increasing y from the left boundary, the fixed points due to M(m/n, ¢)
move toward the boundary in the surfaces of section. When y arrives at the right boundary of M(m/n,
¢), the fixed points are on the boundary in the surfaces of section because of degeneracy of M(m/n, ¢) to
the xaxis (Thiele-Wilson mode).

From the facts mentioned above, the origin for the separations of fixed points concerning y from the
central island showed by Matsushita and Terasaka[2] can be now explained more radically. That is, with
increasing y for a fixed E, because y goes across the left boundary of M(m/n, ¢) in the large order of
rational rotation number m/n, the fixed points successively separate from the central island in the same
order and move toward the boundary. Note that orly the separations of the fixed points identified by the
rotation number m/n with small denominator from the central island were given in ref. 2, because the
numerical serchings for them with large n are difficult. Since the rational numbers are dense, there can
coexist infinitely many chains of fixed points in the surface of section for a point on the y—E plane. This
may be an explanation for the Poincaré-Birkhoff theorem([13-16] in terms of the survivals and the spreads
of the presence region of the pericdic orbits in the harmonic limit. For example, for the point indicated by
ein fig.2, the fixed points identified by m/n satisfying 1/2<m/n<2/3 can coexist in the surface of section.

5. KAM (Kolmogorov-Arnold-Moser) instabilities

With increasing E for a fixed y in fig. 2, the energy goes across successively the left or the right bound-
aries of the presence regions for many M(m/n, ¢). When the energy crosses each of these boundaries,
the resonance conditions can be satisfied. These conditions induce the instabilities for the invariant tori
[17]. These tori are giving the central islands and the boundary in the surface of section, immediately
before the energy trverses of the left and the right boundaries in fig.2, respectively. The invariant tori are
destoried and change into the new tori by the traverses. The new tori give the KAM surfacés around the
n-fixed points caused from the M(m/n, ¢). The invariant tori can be destoried at smaller E for y near ¥n,m,
since then the traverses occur in the smaller E.

Thus, the spreadings of the presence regions for M(m/n, ¢) with ¥ in increasing E can be illustration
of the KAM theorem itself[13—15]. Therefore, the boundary curves in fig.2 represent a set of points, on
which the low order resonances occur. Furthermore, even for the invariant tori identified by the irrational
rotation number ¢, it is well known that those with ¢ satisfying the KAM inequality |s—m/n|<en=2-5 can
be destoried by the perturbation [13—15]. The zone of ¢ determined by the inequality is larger for the
smaller n. From this KAM consequence, the fact in. fig.2, that the spread of the presence region with y in
increasing E is large for M(m/n, ¢) with the rotation number of the small denominator, can be also under-
stood qualitatively. I think that the oscillating character concerning y of the relative area of nonchaotic
regions[2], described in the section 1, is also related to this large spreading for M(m/n, ¢) with the small
denominator.

6. Discussion

In the Toda system too[19], in which the present Morse potential is replaced by the Toda potential,
the similar characteritics as in the present Morse system can be observed for the survivals and the spreads
of the periodic orbits in the harmonic limit. But, the chaotic behaviours can not be seen even for the higher
energy (at least, E/D=10) because of no dissociation energy. There, the equal coefficient of the second
order term was adopted for both potentials. It seems that the conditions, that the potential has the disso-
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ciation energy or the local maximum, may be necessary for the occurrence of chaotic motions[20]. For the
system replaced the Morse potential by the Hénon —Heiles potential [21], the movements of the fixed
points with increasing y are opposite to those in the present Morse system, and the situation is more com-
plicated, particularly for small ¥(0< y<0.2). But, Casati—Ford type E. with y can be also found, except
for y=0 because this system agrees with the original Hénon —Heiles model for y=0(21], where E. is the
energy at which chaotic motions begin to occur. The detailed report on the Toda and the Hénon—Heiles
systems will be given in a separate paper.
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