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|. Introduction

Suppose that the families of motions are defined by a s;lzstem of differential equations

L =Ft2). M

We can assume without loss of generality that F(t, 0)=0.

In addition to (1), let a perturbed differential equation

dw
—=F(t,w) + G, w). (2)
dt

In general the term G(t,w) describes the effect of small disturbances caused by friction, current heat,
etc. It must be realized that often such disturbances are not accurately known ; in general, there are at
most estimates for the perturbations. In particular the assumption G(t,0)=0 has no justification whatso-
ever. But its omission denies the hypothesis that (2) even admits the solution z=0.

Therefore we introduce the concept of total stability which is the extention of the usual stability. In
the Soviet terminology this type of stability is called stability under constantly acting perturbations, which
was introduced by Dubogin [1].

Many authors have discussed the total stability [2], [3], [4], [5], [6].

We also stated some extentions of the sufficient conditions for the total stability and the total bound-
edness in the previous paper [7].

In many applications, we need to see the qualities not of the whole solution but of the partial.

In this paper, we describe several results concerning the total stability and total boundedness with
respect to a part of the solutions of differential equations.

2. Total Stability and Total Boundedness

Let I denote the interval 0=t< o and R denote Euclidean p-space. For zER, let lizlibe the Euclidean
norm of z, and we shall denote by Sy the set of such that lizll <H, H>0.

We consider a system of differential equations (1), where z is a p-vector and F(t,z) is a p-vector func-
tion which is defined on a region in IXRP.

Throughout this paper a solution through a point (to, ze) in IXR” will be denoted by such a form as
z(t ; 2o, to). If for any compact set KCRF there exists a constant L(K)>0 such that IIF(t,z)—F(t,z") I
<L(K) lz—z'lifor z€K, z'€K, we shall write F(t,z) € Cy(2). '

We introduce the following definitions.

(Definition 1)

The zero solution of (1) is said to be uniformly stable if for any ¢>0 and any t,€l there exists a
8(e) >0 such that the inequality Il zo Il <& implies Il z(t ; 2o, to) Il <e for all t=t,.
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(Definition 2)

The zero solution of (1) is said to be uniform-asymptotically stable if it is uniformly stable and there
exist §o>0 and T(&)>0 for any ¢>0 such that if Il zo Il <&, Il 2(t ; 2o, to) Il <& for all t=to+T(e).
(Definition 3) '

The zero solution of (1) is totally stable, if given £>0, there exists a &&)>0 such that for any equation
(2), where II G(t,z) Il <&, the solution z(t ; z,, to) of (2) satisfies Il z(t ;zo, to) Il <e for any initial value such
that Il zo Il <&, t=te=0.

(Definition 4)

The solutions of (1) are totally bounded, if given «>0, there exist two numbers 8(e)>0, y(a)>0 such
that if Z,€ S, then Il z(t ; zo, to) I <B(a) for all t=t,, where z(t ; z, to) is the solution of (2) in which Il G(t,z) I
< y(a), provided o< Il z Il <B.

(Definition 5)
Corresponding to a continuous scalar function V(t,z) defined on an open set, we define the function

Vit 2) =E£?01+%{V(t+h, x+hF(t.2)—V(t.2)).

In case V(t,z) has continuous partial derivatives of the first order, it is evident that

, \ Vv
Vit =2+ 2 F(t 2),

where “ - ” denotes a scalar product.
(Theorem 1)
Suppose that F(t, z) of (1) is continuous on I1X Sy and F(t,0)=0.
IfF(t.z)€ Co(2) and if the solution of (1) is uniform-asympiotically stable. then it is totally stable.

(Theorem 2)
Suppose that F(t,z) of (1) is continuous on 1XRPand that there exists a continuous functionV(t,z) defined
on D : 0=t<oo, |l z |l ZL, where L may be large. which satisfies the following conditions |
@ a(nzn)sV(tz)<b(liz ), where a(r) and b(r) are continuous increasing and ar) -  as
r— 00,
(i) V(t,2)€Col2), and V' (t,2)< —c( Il 2 I| ), where c(t)>0 is continuous.
Then, the solutions of (1) are totally bounded.
For proofs of these theorems, see reference (4).

(Theorem 3)

Suppose that F(t,z) of (1) is continuous on 1 XSy and that F(t,0)=0.
IfF(t,z) € Colz) and if there exists a function V(t,z) defined on 1 XSy, which satisfies the following
conditions ;

(i) V(t,0)=0 and V(t,z) is continuous in(t,z),

@) alt, 1z 11)SV(t,2)<b( 1l z I ), where the function a(t,r) is continuous in (t,r) on Ix 1, a(t,0)=0,
a(t,r)>0 for r£0 and increases monotenically with respect tot and r, and b(r) is a continuous
increasing, positive function,

(i) V'oy(t,2)< —cV(t,z), where a c>0 is a constant.

(iv) | V(t,2)—V(t,2") | =K-llz—2 Il , where K>O0 is a constant.

Then the zero solution of the system (1) is totally stable.

(Theorem 4)
Suppose that F(t,z) of (1) is continuous on IXRF and that there exists a continuous function V(t,z) > 0
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defined on D : 0=t< oo, || z | =L, where L may be large. which satisfies the following conditions ;
@) alt,nzn)=VE,2)Zb(lzIl), where the function alt,r) is continuous in (t,r) and a(t,r)— oo,
uniformly in t as r— o,
(i) V(t,z)€ Co(2),
(ii)) V'o(t,2)< —c(t, Il 2 II), where the function c(t,r) is continuous in (t,r) and there exists k(a,8)>0
such that c(t,r)>k(a,B) for a<r<p.
Then the solutions of (1) are totally bounded.
For proofs of these theorems, see reference (7)

3. Partially Total Stability and Partially Total Boundedness

We shall denote by CIXR™XR" Rk) the set of all continuous functions defined on IXR™XR" with
values in Rk.
Consider a system of differential equations

d
E(x,y)=(f1(t,x,y), fa(t, x,¥)) (3)
and a perturbed system

—dt_(u v) = (it u,v), fot,u,v)) + (gilt, u, v), golt, u,v)). (4)

These are the cases that, in systems (1) and (2),

z =(x,y)ERmXR",
w=(u,v)ERmXR",
F(t,z) =(fi(t,x,y), f2(t,x,y)) and
G(t, w)=(g1(t,u,v), ga(t,u,v))
where f1,g1€ CAXRmXR", R™) and fz,g2 € CIXR®XR", R").
Let w(t ; wo, to) = (u(t ; Wo, to), v(t ; Wo, to)) be the solution of (4) starting from wo = (uo, Vo) at to.
We introduce the following definitions.
(Definition 6)

The zero solution of (3) is partially totally stable, if given £>0, there exists a &()>0 such that for
any equation (4), where I| G(t,w) Il <8, the solution w(t ; wo, to) satisfies Il u(t ; wo, to) Il <& for any initial
value such that || wo I| <&, t=te=0.

(Definition 7)

The solutions of (3) are partially totally bounded, if given a>0, there exist two numbers (), 7(a)>0
such that if Il wo II <a, then I u(t ; wo, to) Il <B(a) for all t=to, where w(t ; wo, to) is the solution of (4) in
which Il G(t, w) I| < ¥(a), provided e< I W Il <8 .

(Definition 8)
Corresponding to a continuous scalar function V(t,x,y) defined on an open set, we define the function

Ve (t,%,y) =E%{V(t+h, x+hfyt,x,y), y +hft,x, )~ V(t,x,y)}.
In case V(t,x,y) has continuous partial derivatives of the first order, it is evident that
v

av
Vet x,y)= St _a_ - fi(t,x, ) +—5y— falt, x, 7).
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(Theorem 5)
Suppose that F(t,z) of (3) is continuous on 1 XSy and that F(t,0)=0.
If F(t,z) € Co2) and if there exists a continuous function V(t, X,y) defined on IXDXR" (D & a domain
in R™), which satisfies the following conditions ;
@) alt, 1x1)=V(t,x,y)<b(ll x 1), where the function a(t,r) is continuous in (t,r) on IXI, a(t,0)=
0, a(t,r)>0 for r#£0 and is nondecreasing with respect tot andr, and b(r) is a continuous increas-
ing, positive function and b(0)=0,
(i) V'e(t,x)< —cV(t,x,y), wherea c is a positive constant,
(i) | V(t,x, )=V, x,y) | <Kllz—z' I, where z=(x,y), 2 =(x',y") and a K is a positive constant,
then the zero solution of the system (3) is partially totally stable.
(Proof) For any £>0, choose a &:(¢)>0 so that b(8) <a(0, ), 0< &< ¢ and also a §()>0 so small that
o< _zi?{,_bl, 0< & < 8. Suppose that a solution
w(t ; Wo, to) = (u(t ; wo,to), V(t ; wo, to))
of (4), where Il wo Il <& and Il G(t,w) I| < ¢, satisfies Il u(t ; o, to) Il =¢ at some t.
Then there are t; and t, such that
Hulty ; wo, to) Il =&, llultz; Wo, to) Il =¢
and &<llult; weto)ll<e for tE(ty,t,).
On the other hand, for t €[t,, t,]

Vie(t,u,v) < —cVe(t,u,v) +K I G, w) I
< —ca(t,u) + K11 G(t,w) Il
< —ca(0, 6) +K&<0.

Thus, we have

Vs, ults ; Wo, to), V(t1 ; Wo, ta)) > V(ts, ults ; Wo. to), vits ; W, to)).

Therefore, we have

a(O, E) < a(tz, 6) = a(tz, I Ll(tz , Wo, to) Il )
= V(ta, ultz ; Wo, to), V(tz ; Wo, to)) < V(ty, ulty ; Wo, to), V(t, ; Wo, to))
=b( 1l ulty ; Wo, to) Il) =b(8y) < a(0, )

which is a contradiction.

Therefore, Il u(t ; wo, t)) | < e for all t=t, which shows the zero solution of (3) is partially totally
stable.
(Theorem 6)

Suppose that F(t,z) of (3) is continuous on IXR*XR™ and that there exists a continuous function V(t,x,y)
>0 defined on D={(t,x,y) ; tEL I x Il ZL, yER™}, where L may be large, which satisfies the following
conditions ;

@) alt, 1 x11)=V(t,x,y)=b( 1l x Il ), where the function a(t, r) is a continuous nondecreasing func-
tion in (t,r) and a(t, r)— oo uniformly in t as r— oo,
(i) V(t,z)€Cylz), where V(t, z)=V(t,x,y),
(iil) V'a(t,x,y) < —clt, | X | ), where the function c(t,r) is continuous in (t,r) and there exists
k(a, 6) > 0 such that c(t,r) >k(a, B) for asr<g.
Then the solutions of (3) are partially totally bounded.
(Proof) For anya>0, choose a 8(a)>0 so that a(), 8)>b(a).
By (i), for z such that e< 11z, I 2’ Il B, there is a K(a)>0 such that
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| V(t,2) =V(t,2) | =Kliz—2"1I.

Suppose that a solution w(t ; W, to) of (4), where Il Wo Il < and Il G(t, w) | < ¥(a), satisfies
Jlu(t ; Wo,to) Il =8(a) at some t. Then there are t; and t, such that

lulty ; Wo, to) Il =a. Il ultz ; Wo, to) Il =8(a)
and that a< Ilut ; Wo, to) Il <B(e) for tE(tyta).
In the domain Q={(t,u,v)| 0=t< oo, a< llull <B veRm},

Vit u,v) £ Vig(t,u,v) + K I Gt, w) I
: < —ct,u)+K G, w)I.

k .
Therefore, if we choose a ¥(a) so that y(e) si, we have V'y(t,u,v) =0 for | G(t,w) Il <y(a) in Q.
Thus we have

a0, B) < a(ty, B) =alte, I u(tz ; Wo, to) II)
< Vita, ults ; Wo, to), Vitz ; Wo, t)) S V(ty, ults ; Wo, to), v(ts ; Wo, ta)
< b( Il ulty ; Wo, to) Il ) = bla),

which contradicts a(0, 8)> b(a).
Therefore, we have Il u(t ; W, to) Il <B(a) for all t=t,, which shows that the solutions of (3) are parti-
ally totally bounded.
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