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Introduction

In [6] O' Neill introduced the notion of a Riemannian submersion. Let »;M——M’ be a Riemannian
submersion. H.B.Lawson [5] and R.H. Escobales [2] have shown some relations between submanifolds
of M and those of M.

In this paper we will show that if a submanifold N of M is locally symmetric, then a submanifold =(N)
of M’ is also locally symmetric provided some conditions.

|. Submersions

Let M and M’ be Riemannian manifolds of dimensions m+p and m respectively. By a Riemannian
submersion we mean a C* mapping »;M——M’ such that r is of maximal rank and =+ preserves the
lengths of horizontal vectors, 1. e., vectors orthogonal to the fiber ~(y) for some y e M'.

Throughout this paper, we assume that the fibers are totally geodesic in M.

Let X denote a tangent vector at x€ M. Then X decomposes as VX+ HX, where VX is tangent to
the fiber through x and HX is perpendicular to it. If X= VX, it is called a vertical vector ; and if X=HX,
it is called horizontal. Let F and 7 * denote the Riemannian connections of M and M’ respectively.

We define a tensor A associated with the submersion. For any vector fields E and F on M,

AF=V P (HF)+HF & VF).

Ais a (1, 2)—tensor, and it has the following properties [6] :
(1) At each point, Ag is a skew-symmetric linear operator on the tangent space of M, and it reverses
the horizontal and vertical subspaces.
@) Ac=Au.
(3) For horizontal vector fields, A has the alternation property
AY=—AX.
We define a vector field X on M to be basic provided X is horizontal and #-related to a vector field
X+ on M'. Every vector field X, on M’ has a unique horizontal lift X to M, and X is basic.

Lemma |. [6]. If X and Y are basic vector fields on M, then
1) gX, V)=8*X., Ya) o m,
(2) H[X, Y] is the basic vector field corresponding to [X., Y.],
(3) HP Y is the basic vector field corresponding to 7 *y Y., where § and g* are the metrics of M
and M’ respectively.

Lemma 2. [6]. Let X and Y be horizontal vector fields, and V is vertical vector fields on M. Then
1) PvX=HPVX,
@) PxV=AxV+V7xV,
() PxY=HPxY+AxY.
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Furthermore, if X is basic, HF vX=AxV.
Denote by R the curvature tensor of M. The horizontal lift of the curvature tensor R* of M’ will also
be denoted by R* ; explicitly, if h, hs, hs, hs are horizontal tangent vectors to M, we set

Q(R' n 1o (D3), h4)=§'(R' s ngx(Nsa), Nes) ©
where hi,= m.(hi).

Lemma 3. [6]. Let X, Y, Z, H are horizontal vector fields and V and W are vertical vector fields, then
1) RX, V, Y, W)=3((7 vAixY, W)+&(AxV, AyW),
@) RX, Y, Z, V)=8((F zA)xY, V),
®) RX, Y, Z, H)=R*(X, Y, Z, H)—2&(AxY, AzH)+&AvZ, AxH)+g(AzX, AvH).

2. Submanifolds

Suppose now that N is an n+p—dimensional submanifold of M which respects the submersion 7.
That is, suppose there is a submersion 7 ; N——N’ where N’ is a submanifold of M’ such that the diagram
f

N——M
N

N———M
commutes and the immersion f is a diffeomorphism on the fibers. We assume that the fibers are totally
geodesic in N.

Let S be second foundamental form of the submanifold N. Let Nx (k=1, 2, «+eceeee ,m—n) be

orthonormal normal vector fields of N. Let g(7) and g*(7*) denote the induced metrics (connections) of
N and N’ respectively. Then the Gauss-Weingarten formulas are given by

7xY=pxY+hX,Y), PxE=—SgX+DxE X, Yex(N),Eex+(N),

where g(SeX, Y)=g(h(X, Y), E) and D is the connection in the normal bundle T(N)*. Note that the normal
space is always horizontal. We set CeX=HSeHX where X is tangent to N. Then we have the following
equations

2.1) SEX=CeX+AeX,

(2.2) SEV=DvE— FvE=DvE—HP vE
where X and V are horizontal and vertical tangent vectors on N[2].

Let A be a tensor associated with the submersion »; N——N’. Then we have

AxY=AxY+h(HX, VY) X, Yex(@).

Let Vi(i=1, 2, -+~ , D) be orthonormal vertical vector fields on N. From AxY is vertical, for horizontal
vector fields X, Y, we set AxY= Za (X, Y)Vi. Let R and R* denote the curvature tensors of N and N’
respectively. For horizontal vector flelds X,Y, Z and H on N we have

2, 3) RX, Y, Z, H)=R*(X, Y, Z, H)—2g(AxY, AzH)+g(AvZ, AxH)+g(AzX, AyH).

We set D(X, Y, Z, H) = —2g(AxY, AzH)+ g(AvZ, AxH)+g(AzX, AvyH).

Lemma 4. Let X, Y, Z, H and C be horizontal vector fields on N. Then
(PcDXX, Y, Z, H)= Z‘.{ —24(Z, HRX, Y, C, Vi)—24i(X, Y)R(Z, H, C, V)
+a(X H)R®Y, Z,C, Vi)+d\(Y, Z)RX, H, C, Vi)
+d(Y,H)R(Z, X, C, Vi)+ d(Z, X)R(Y, H, C, Vi)}.
Proof. From the following equations
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CD(X, Y, Z, H))=—2g(V c(AxY), AzH)—2g(AxY, 7 c(AzH))
+2(7 c(AvZ), AxH)+g(AvZ, 7 c(AxH))
+g(V c(AzX), AyH)+g(AzX, 7 c(AvH)),
7 c(AxY)=(P cAxY+ApraY +Ax(P cY)
and Lemma 3. (2), we have
(FeDXX, Y, Z, H)=C(DXX, Y, Z, H)-D(F X, Y, Z, H)-D(X, VY, Z, H)
—-DXX,Y, 7cZ,H-DX, Y, Z, VcH)
=—2g((P cA)xY, AzH)—2g(AxY, (¥ cA)zH)+g((7 cANZ, AxH)
-;g(AvZ, (P cAxH)+g((7 cA)zX, AyH)+g(AzX, (RA)YH)
=21{—24(Z,HRX, Y.C, Vi) ~2'(X, Y)R(Z H,C, Vi)
o (X, HIR(Y, Z, C, Vi)+4 (Y, R(X, H, C, Vi)
+d'(Y,HR(Z, X, C, Vi)+d'(Z, X)R(Y, H, C, Vi)}. q.ed.

Lemma 5. Let M be a space of constant curvature c. Assum AgF =0, where F is horizontal and tangent
to N and E is normal to N. Then R(X, Y, Z, V)=0, where X, Y, Z are horizontal vector fields on N and V is
vertical vector field on N.

Proof. From the equation of Gauss, we have

R(X, Y, Z, V)=R(X, Y, Z, V)—g(h(X, 2), h(Y, V)) +gh(X, V), h(Y, Z)).
By assumption, R(X, Y)V=c(g(V, Y)X—g(V, X)Y)=0. We set h(X, Y)=k'i::hk(x, Y)N..  From Lemma
2, (2.2) and assumption e obtain .

g(h(X, 2), h(Y,V))=Zh*(X, Z)g(N, h(Y, V)=Zh(X, Z)gSmV, ¥)

=53 (X, 2D — HP vNi, V)= ThH(X, 2)g(— HP v, V)

=S (X, 2)g(—AmV, V=Sh(X, De(V, An¥V)=0. qed
Theorem. Let r ; M————M’ be a Riemannian submersion with totally geodesic fibers and N is a
submanifold of M which respects the submersion 7, that is, there is a submersion = ; N——N’ where

N’ is a submanifold of M’ such that the diagram
f

N M
I

N- M’

commutes and the immersion f is a diffeomorphism on the fibers. We assume that the fibers are totally
geodesic in N. Let M be a space of constant curvature and AgF=0, where F is horizontal and tangent to
N and E is normal to N. If N is locally symmetric, then N’ is also locally symmetric.
Proof. Let X., Y. Z,, H, and C, be tangent vector fields on N’, and let X, Y, Z, H and C be their
horizontal lifts. Using (2. 3) and Lemma 1 we see that
(P*ca RYXs, Ya, Zy, H)) o 7
=(ct(R‘(X#y Y:n Z., H*)) ° K_R‘(V *CaXx, Y*, Zmy H#» °m
_R*(X*: V*Cth: Zt, H*) ° K_R*(X:y Y*, V*C:Z*, H,) o
—R‘(Xtr Y. Zs, V‘C#Ht) °n
=CR*X, Y, Z, H))-R*Hr X, Y, Z, H)-R*X, HpcY, Z, H)
—R*X, Y, HrcZ, H)-R*(X, Y, Z, Hr cH)
=(PcRX Y, Z, H)+R(VP X, Y, Z, )+ RX, VPcY, Z, H)
+RX, Y, VPcZ H)+RX, Y, Z, VP cH)—(PcD)X, Y, Z, H). q.ed.
Using Lemma 4, Lemma 5 and assumption we obtain F*R*=0, in other words, N’ is locally symmetric.
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Example

Let 7z ; S?*1—CP(n) be the standard submersion from a sphere of radius one [2] [6]. Let D be the
outward unit normal on the S2»*1CR2n+2=Cr+1_ Let J is the natural almost complex structure on Cn+l,
Let (S%*1, ¢, &, », g) be standard Sasakian manifold. A (2m+1)—dimensional submanifold N of S2**1 is
said to be invariant, if the structure vector field £ is tangent to N everywhere on N and ¢ X is tangent to
N for any tangent vector X to N. Any invariant submanifold N with induced structure tensors, which will
be denoted by the same letters (g, & 7, g) as S?*1, is also a Sasakian manifold. Let F is horizontal and
tangent to N and E is normal to N. Using Ar(JD)=JF and JF= ¢F + F)D we obtain g(AcF, £)=—g(AsF,
JD)=g(AFE, JD)= —g(E, ArJD)=—g(E, JF)=—g(E, ¢F). From N is an invariant submanifold, we see that
g(AEF, £)=0. Therefore AgF=0. The example of a locally symmetric invariant submanifold of S2*! is
an unit sphere S2m+! (m<n) with induced structure. Then N’'= 2(S2m+1)=CPm is locally symmetric.
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