Riemannian Submersions and Locally Symmetric Submanifolds

Fumio NARITA

(Received on 2 October, 1984)

Introduction

In [6] O' Neill introduced the notion of a Riemannian submersion. Let π ; $M \longrightarrow M'$ be a Riemannian submersion. H. B. Lawson [5] and R. H. Escobales [2] have shown some relations between submanifolds of M and those of M'.

In this paper we will show that if a submanifold N of M is locally symmetric, then a submanifold $\pi(N)$ of M' is also locally symmetric provided some conditions.

I. Submersions

Let M and M' be Riemannian manifolds of dimensions m+p and m respectively. By a Riemannian submersion we mean a C^{∞} mapping $\pi; M \longrightarrow M'$ such that π is of maximal rank and π_* preserves the lengths of horizontal vectors, i. e., vectors orthogonal to the fiber $\pi^{-1}(y)$ for some $y \in M'$.

Throughout this paper, we assume that the fibers are totally geodesic in M.

Let X denote a tangent vector at $x \in M$. Then X decomposes as VX + HX, where VX is tangent to the fiber through x and HX is perpendicular to it. If X = VX, it is called a vertical vector; and if X = HX, it is called horizontal. Let $\tilde{\mathbf{p}}$ and $\tilde{\mathbf{p}}$ * denote the Riemannian connections of M and M' respectively.

We define a tensor A associated with the submersion. For any vector fields E and F on M,

$$\tilde{\mathbf{A}}_{\mathbf{F}}\mathbf{F} = V \tilde{\mathbf{p}}_{H\mathbf{F}}(H\mathbf{F}) + H \tilde{\mathbf{p}}_{H\mathbf{F}}(V\mathbf{F}).$$

A is a (1, 2)—tensor, and it has the following properties [6]:

- (1) At each point, \bar{A}_E is a skew-symmetric linear operator on the tangent space of M, and it reverses the horizontal and vertical subspaces.
- (2) $\tilde{A}_{F} = \tilde{A}_{FF}$.
- (3) For horizontal vector fields, \tilde{A} has the alternation property $\tilde{A}_{x}Y = -\tilde{A}_{x}X$.

We define a vector field X on M to be basic provided X is horizontal and π -related to a vector field X* on M'. Every vector field X* on M' has a unique horizontal lift X to M, and X is basic.

Lemma I. [6]. If X and Y are basic vector fields on M, then

- (1) $\tilde{g}(X, Y) = \tilde{g}^*(X_*, Y_*) \circ \pi$,
- (2) H[X, Y] is the basic vector field corresponding to $[X_*, Y_*]$.
- (3) $H\tilde{\mathbf{p}}_{x}Y$ is the basic vector field corresponding to $\tilde{\mathbf{p}}_{x*}Y_{*}$, where $\tilde{\mathbf{g}}$ and $\tilde{\mathbf{g}}^{*}$ are the metrics of M and M' respectively.

Lemma 2. [6]. Let X and Y be horizontal vector fields, and V is vertical vector fields on M. Then

- (1) $\tilde{\mathbf{p}}_{V}X = H\tilde{\mathbf{p}}_{V}X$,
- (2) $\tilde{\mathbf{p}}_{X}V = \tilde{\mathbf{A}}_{X}V + V\tilde{\mathbf{p}}_{X}V$,
- (3) $\tilde{\mathbf{p}}_{X}\mathbf{Y} = H\tilde{\mathbf{p}}_{X}\mathbf{Y} + \tilde{\mathbf{A}}_{X}\mathbf{Y}$.

Furthermore, if X is basic, $H\tilde{\mathbf{p}}_{V}X = \tilde{A}_{X}V$.

Denote by \tilde{R} the curvature tensor of M. The horizontal lift of the curvature tensor \tilde{R}^* of M' will also be denoted by \tilde{R}^* ; explicitly, if h_1 , h_2 , h_3 , h_4 are horizontal tangent vectors to M, we set

$$\tilde{g}(\tilde{R}^*_{h_1 h_2}(h_3), h_4) = \tilde{g}^*(\tilde{R}^*_{h_1 * h_2 *}(h_{3*}), h_{4*}) \circ \pi$$

where $h_{i*} = \pi_*(h_i)$.

Lemma 3. [6]. Let X, Y, Z, H are horizontal vector fields and V and W are vertical vector fields, then

- (1) $\tilde{R}(X, V, Y, W) = \tilde{g}((\tilde{p}_{V}\tilde{A})_{X}Y, W) + \tilde{g}(\tilde{A}_{X}V, \tilde{A}_{Y}W),$
- (2) $\tilde{R}(X, Y, Z, V) = \tilde{g}((\tilde{p}_z \tilde{A})_X Y, V),$
- (3) $\tilde{R}(X, Y, Z, H) = \tilde{R}^*(X, Y, Z, H) 2\tilde{g}(\tilde{A}_XY, \tilde{A}_ZH) + \tilde{g}(\tilde{A}_YZ, \tilde{A}_XH) + \tilde{g}(\tilde{A}_ZX, \tilde{A}_YH)$.

2. Submanifolds

Suppose now that N is an n+p-dimensional submanifold of M which respects the submersion π . That is, suppose there is a submersion π ; N \longrightarrow N' where N' is a submanifold of M' such that the diagram

commutes and the immersion f is a diffeomorphism on the fibers. We assume that the fibers are totally geodesic in N.

Let S be second foundamental form of the submanifold N. Let N_k ($k=1, 2, \dots, m-n$) be orthonormal normal vector fields of N. Let $g(\mathbf{r})$ and $g^*(\mathbf{r}^*)$ denote the induced metrics (connections) of N and N' respectively. Then the Gauss-Weingarten formulas are given by

$$\tilde{p}_{X}Y = p_{X}Y + h(X, Y), \qquad \tilde{p}_{X}E = -S_{E}X + \tilde{D}_{X}E \qquad X, Y \in x(N), E \in x^{\perp}(N),$$

where $g(S_EX, Y) = g(h(X, Y), E)$ and \bar{D} is the connection in the normal bundle $T(N)^{\perp}$. Note that the normal space is always horizontal. We set $C_EX = HS_EHX$ where X is tangent to N. Then we have the following equations

- (2. 1) $S_E X = C_E X + \tilde{A}_E X$,
- (2. 2) $S_EV = \bar{D}_VE \bar{p}_VE = \bar{D}_VE H\bar{p}_VE$

where X and V are horizontal and vertical tangent vectors on N[2].

Let A be a tensor associated with the submersion π ; N \longrightarrow N'. Then we have

$$\tilde{A}_X Y = A_X Y + h(HX, VY)$$
 $X, Y \in x(N)$.

Let $V_i(i=1, 2, \dots, p)$ be orthonormal vertical vector fields on N. From A_XY is vertical, for horizontal vector fields X, Y, we set $A_XY = \sum_{i=1}^{p} a^i(X, Y)V_i$. Let R and R* denote the curvature tensors of N and N' respectively. For horizontal vector fields X, Y, Z and H on N we have

(2, 3)
$$R(X, Y, Z, H) = R^*(X, Y, Z, H) - 2g(A_XY, A_ZH) + g(A_YZ, A_XH) + g(A_ZX, A_YH).$$

We set $D(X, Y, Z, H) = -2g(A_XY, A_ZH) + g(A_YZ, A_XH) + g(A_ZX, A_YH)$.

Lemma 4. Let X, Y, Z, H and C be horizontal vector fields on N. Then $(\mathbf{p}_{C}D)(X, Y, Z, H) = \sum_{i=1}^{p} \{ -2\alpha^{i}(Z, H)R(X, Y, C, V_{i}) - 2\alpha^{i}(X, Y)R(Z, H, C, V_{i}) + \alpha^{i}(X, H)R(Y, Z, C, V_{i}) + \alpha^{i}(Y, Z)R(X, H, C, V_{i}) + \alpha^{i}(Y, H)R(Z, X, C, V_{i}) + \alpha^{i}(Z, X)R(Y, H, C, V_{i}) \}.$

Proof. From the following equations

$$C(D(X, Y, Z, H)) = -2g(\mathbf{p}_{C}(A_{X}Y), A_{Z}H) - 2g(A_{X}Y, \mathbf{p}_{C}(A_{Z}H)) \\ + g(\mathbf{p}_{C}(A_{Y}Z), A_{X}H) + g(A_{Y}Z, \mathbf{p}_{C}(A_{X}H)) \\ + g(\mathbf{p}_{C}(A_{Z}X), A_{Y}H) + g(A_{Z}X, \mathbf{p}_{C}(A_{Y}H)), \\ \mathbf{p}_{C}(A_{X}Y) = (\mathbf{p}_{C}A)_{X}Y + A_{\mathbf{p}_{C}X}Y + A_{X}(\mathbf{p}_{C}Y) \\ \text{and Lemma 3. (2), we have} \\ (\mathbf{p}_{C}D)(X, Y, Z, H) = C(D(X, Y, Z, H)) - D(\mathbf{p}_{C}X, Y, Z, H) - D(X, \mathbf{p}_{C}Y, Z, H) \\ - D(X, Y, \mathbf{p}_{C}Z, H) - D(X, Y, Z, \mathbf{p}_{C}H) \\ = -2g((\mathbf{p}_{C}A)_{X}Y, A_{Z}H) - 2g(A_{X}Y, (\mathbf{p}_{C}A)_{Z}H) + g((\mathbf{p}_{C}A)_{Y}Z, A_{X}H) \\ + g(A_{Y}Z, (\mathbf{p}_{C}A)_{X}H) + g((\mathbf{p}_{C}A)_{Z}X, A_{Y}H) + g(A_{Z}X, (\mathbf{p}_{C}A)_{Y}H) \\ = \sum_{i=1}^{p} \left\{ -2a^{i}(Z, H)R(X, Y, C, V_{i}) - 2a^{i}(X, Y)R(Z, H, C, V_{i}) \\ + a^{i}(Y, H)R(Y, Z, C, V_{i}) + a^{i}(Y, Z)R(X, H, C, V_{i}) \right\}.$$
 q.e.d.

Lemma 5. Let M be a space of constant curvature c. Assum $\tilde{A}_EF=0$, where F is horizontal and tangent to N and E is normal to N. Then R(X, Y, Z, V)=0, where X, Y, Z are horizontal vector fields on N and V is vertical vector field on N.

Proof. From the equation of Gauss, we have

 $R(X, Y, Z, V) = \tilde{R}(X, Y, Z, V) - g(h(X, Z), h(Y, V)) + g(h(X, V), h(Y, Z)).$ By assumption, $\tilde{R}(X, Y)V = c(g(V, Y)X - g(V, X)Y) = 0$. We set $h(X, Y) = \sum_{k=1}^{m-n} h^k(X, Y)N_k$. From Lemma 2, (2. 2) and assumption we obtain

$$\begin{split} g(h(X,Z),\,h(Y,V)) &= \sum_{k=1}^{m-n} h^k(X,\,Z) g(N_k,\,h(Y,\,V) = \sum_{k=1}^{m-n} h^k(X,\,Z) g(S_{Nk}V,\,Y) \\ &= \sum_{k=1}^{m-n} h^k(X,\,Z) g(\bar{D}_V N_k - H\tilde{\textbf{\textit{p}}}_V N_k,\,Y) = \sum_{k=1}^{m-n} h^k(X,\,Z) g(-H\tilde{\textbf{\textit{p}}}_V N_k,\,Y) \\ &= \sum_{k=1}^{m-n} h^k(X,\,Z) g(-\tilde{A}_{Nk}V,\,Y) = \sum_{k=1}^{m-n} h^k(X,\,Z) g(V,\,\tilde{A}_{Nk}Y) = 0. \end{split} \qquad \qquad \text{q.e.d.}$$

Theorem. Let π ; $M \longrightarrow M'$ be a Riemannian submersion with totally geodesic fibers and N is a submanifold of M which respects the submersion π , that is, there is a submersion π ; $N \longrightarrow N'$ where N' is a submanifold of M' such that the diagram

$$\begin{array}{cccc}
N & & f \\
\pi & \downarrow & f' & \downarrow \pi \\
N' & & M'
\end{array}$$

commutes and the immersion f is a diffeomorphism on the fibers. We assume that the fibers are totally geodesic in N. Let M be a space of constant curvature and $\tilde{A}_E F = 0$, where F is horizontal and tangent to N and E is normal to N. If N is locally symmetric, then N' is also locally symmetric.

Proof. Let X_* , Y_* , Z_* , H_* and C_* be tangent vector fields on N', and let X, Y, Z, H and C be their horizontal lifts. Using (2. 3) and Lemma 1 we see that

$$\begin{split} &((\not\!\!P^*_{C_*} R^*)(X_*, Y_*, Z_*, H_*)) \circ \pi \\ &= &(C_*(R^*(X_*, Y_*, Z_*, H_*)) \circ \pi - R^*(\not\!\!P^*_{C_*}X_*, Y_*, Z_*, H_*)) \circ \pi \\ &- R^*(X_*, \not\!\!P^*_{C_*}Y_*, Z_*, H_*) \circ \pi - R^*(X_*, Y_*, \not\!\!P^*_{C_*}Z_*, H_*) \circ \pi \\ &- R^*(X_*, Y_*, Z_*, \not\!\!P^*_{C_*}H_*) \circ \pi \\ &= &C(R^*(X_*, Y_*, Z_*, \not\!\!P^*_{C_*}H_*) \circ \pi \\ &= &C(R^*(X_*, Y_*, Z_*, H)) - R^*(H\not\!\!P_CX_*, Y_*, Z_*, H) - R^*(X_*, H\not\!\!P_CY_*, Z_*, H) \\ &- R^*(X_*, Y_*, H\not\!\!P_CZ_*, H) - R^*(X_*, Y_*, Z_*, H\not\!\!P_CH) \\ &= &(\not\!\!P_CR)(X_*, Y_*, Z_*, H) + R(Y\not\!\!P_CX_*, Y_*, Z_*, H) + R(X_*, Y_*, Y_*, Z_*, H) - (\not\!\!P_CD)(X_*, Y_*, Z_*, H). \end{split}$$
 q.e.d.

Using Lemma 4, Lemma 5 and assumption we obtain $\mathbf{p}^*\mathbf{R}^*=0$, in other words, N' is locally symmetric.

Example

Let π ; $S^{2n+1} \longrightarrow CP(n)$ be the standard submersion from a sphere of radius one [2] [6]. Let \tilde{D} be the outward unit normal on the $S^{2n+1} \subset R^{2n+2} = C^{n+1}$. Let J is the natural almost complex structure on C^{n+1} . Let $(S^{2n+1}, \phi, \xi, \eta, g)$ be standard Sasakian manifold. A (2m+1)-dimensional submanifold N of S^{2n+1} is said to be invariant, if the structure vector field ξ is tangent to N everywhere on N and ϕ X is tangent to N for any tangent vector X to N. Any invariant submanifold N with induced structure tensors, which will be denoted by the same letters (ϕ, ξ, η, g) as S^{2n+1} , is also a Sasakian manifold. Let F is horizontal and tangent to N and E is normal to N. Using $\tilde{A}_F(J\tilde{D}) = JF$ and $JF = \phi F + \eta(F)\tilde{D}$ we obtain $g(\tilde{A}_E F, \xi) = -g(\tilde{A}_E F, J\tilde{D}) = g(\tilde{A}_F E, J\tilde{D}) = -g(E, \tilde{A}_F J\tilde{D}) = -g(E, JF) = -g(E, \phi F)$. From N is an invariant submanifold, we see that $g(\tilde{A}_E F, \xi) = 0$. Therefore $\tilde{A}_E F = 0$. The example of a locally symmetric invariant submanifold of S^{2n+1} is an unit sphere S^{2m+1} (m < n) with induced structure. Then $N' = \pi(S^{2m+1}) = CP^m$ is locally symmetric.

References

- [1] R. H. Escobals, Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geometry 10 (1975) 253–276.
- [2] R. H. Escobals, Jr., Riemannian submersions from complex projective spaces, J. Differential Geometry 13(1978) 93–107.
- [3] K. Kenmotsu, Invariant submanifolds in a Sasakian manifold, Tohoku Math. Journ. 21(1969) 495-500.
- [4] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219(1976) 277-290.
- [5] H. B. Lawson, Rigidity theorems in rank-1 symmetric spaces, J. Differential Geometry 4(1970) 349-357.
- [6] B. O' Neill, The fundamental equations of a submersion, Michigan Math. J. 13(1966) 459-469.
- [7] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. 85(1967) 246-266.