膨潤性地盤のヒズミ軟化に関する基礎的研究

伊藤 驍・金澤徳雄

Strain Softening of Swelling Soils

Takeshi ITO and Norio KANAZAWA (昭和58年10月31日受理)

Triaxial tests on several blends of Toyoura standard sand, Kaolinite and Kunimine montmorillonite clay at varying proportions by weight were carried out to evaluate their strain hardening and softening characteristics. The study showed that the behavior during loading to swell soils were fitted with the theory presented by Richard-Abbott. The relationships between engineering properties were investigated with the connection of their physical properties, and the strengths were found to be significantly correlated with the montmorillonite content by regression analyses. An analytical equation derived from test data was proposed and verificated as a function of strength and a water content of the soil.

1. 緒 言

地盤の中には非常に多種類の粘土鉱物 (clay minerals)が存在する。その中には全く吸水性を示さな いもの(Kaolinite)や著しく吸水性を示すもの (Montmorillonite) 及びこの中間的性格のもの等多 様である。土質工学では粘土を単に粒子径でのみ定 義づけ実際の性格については余り論議しないが、し かし土の挙動は含有粘土鉱物によって著しく異なる のであるから、本研究ではこの問題を取りあげる。 即ち多様な性格をもつ粘土鉱物が地盤に混沌として 存在するため地盤は含水状態によって複雑な挙動を 示すが、特にベントナイト化した土質は膨潤挙動を 示し土木工事施工上、極めて扱いにくいものになっ 地盤のうち,砂は圧密沈下や膨潤挙動を ている。 余り示さないが,モンモリロナイト,セリサイト, クロライト等の粘土鉱物を含む地盤は、水を吸って 膨らみ体積を増加させ、力学的には破壊後も大きな 残留強度をもって著しいヒズミ軟化の現象を示す。 このような地盤の膨潤挙動やヒズミ軟化は、トンネ ル1)や地すべり2)に多くみられ、その現象解明が重要 視されているのであるが, 基礎的な研究は余りない。 筆者は既に膨潤現象の構成方程式を提案した³⁾が、 本研究ではさらにベントナイトを用い、標準砂及び カオリナイトを混入した供試体を作製し、標準締固 め試験による最適含水比状態の試料の膨潤試験及び 三軸圧縮試験を行なって、応力~ヒズミ関係におけ

る非線形性について検討した。特にモンモリロナイ トの含有率の相違,拘束圧の相違によって発生する 軟化現象について考察し,Richard-Abbott 理論と の適合性について検討を行なった。その結果,本試 料のヒズミ軟化現象はこの理論によってかなりうま く説明できるものであることを検証した。また異種 の試験操作で得られた強度間の関係を規定する構成 方程式も導いたので以下に主な内容について述べ る。

2. 試料と実験方法

試料には次の2つの系統のものを使った。ここで は膨潤性粘土鉱物を多量に含むベントナイト(クニ ゲル3V, Na 系モンモリロナイトを70~80%含む) を用い,これに(1)豊浦標準砂を重量比で混入し,ベ ントナイト含有率10,20,30,40,50%によって試 料名を Bs10,Bs20,Bs20,Bs30,Bs40,Bs50 とする。

(2)豊浦標準砂及びカオリナイトを混入し、前と同様 ベントナイト含有率によって、B_{KS5},B_{KS10},B_{KS15}, B_{KS20},B_{KS33},B_{KS50}とする。

次に各含有率の試料について締固め試験を行ない 最適含水比(*wopt*)状態の試料を作製し,三軸圧縮試 験を行なう。この場合,試料は容易に吸排水を行な わないので,UU-testを実施した。また試料(1)につ いては一面セン断試験も行なった。なお,試料は作 製後24時間デシケータに静置し,実験時の三軸チャ

昭和 59 年 2 月

伊 驍・金 澤 徳 雄 藤

(b)

B_{KS} 試料のベントナイト含有量による諸物性のヘキサダイヤグラム 図-1

ンバーの水温は 20±1°C に調整した。

(a)

まず試験に用いた Brs 試料について試料の種類 (ベントナイト含有率)による諸物性をヘキサダイヤ グラムを使って表わすと図-1(a)~(f)のようである。 図中の記号は

- B_{Ks}: ベントナイト含有率 (重量比)
- C_µ: 2µ以下の粘土分
- εs: 先行圧密荷重 3.2 kgf/cm²による除荷 荷重 1.6 から 0.1 kgf/cm²まで(96 時 間) の膨潤ヒズミ
- I_P: 塑性指数
- Wopt: 最適含水比
- Yd·max: 最大乾燥密度

これらの図をみると、B_{KS}の大きさによって物理 的な性質が除々に変化しており膨潤能力はベントナ イト含有率の大きさで変化している様子がわかる。

図-2 B_{KS} 試料による _{7d} - W曲線

秋田高専研究紀要第19号

このような変化のうち, 系統性のある 2,3の特性関係を整理すると次のようである。

$$\gamma_{d \cdot max} = 1.802 \exp(-4.005 \times 10^{-3} \times B_{KS}) \quad (1)$$

$$I_P = 16.14 + 5.881(B_{KS}) \quad (2)$$

こうした試料について力学試験を行なうため,試 料が最適含水比状態にあるものを使う。即ち各含有 率(*B_{KS}*)における 5~7 個の試料のうち,図-2 に示 す丸印部分にあたる試料をさらに数個作製し,三軸 圧縮試験や一面セン断試験を行なうこととした。

3. Strain Softening に関する検討

(1) 解析方法

ここで用いた供試体は軟岩を想定したものであ る。軟岩はヒズミ硬化現象の他に最大強度に達した あとも軟化現象を著しく示すが、このような現象を 表示する方法は色々試みられてきた。例えばヒズミ 硬化の表現形式として Kondner の双曲線法

$$(\sigma_1 - \sigma_3) = \frac{\varepsilon_1}{a + b\varepsilon_1} \tag{3}$$

ここで, a,b:定数

σ1,σ3:主応力

が広く用いられている。しかしこれはヒズミ硬化か ら塑性流動,さらにヒズミ軟化に至る一連の地盤材 料の挙動を表現し得ないという欠点がある。これに 対して Ramberg-Osgood モデルはこの表現が可能 である。しかしさらにこれを改良した次の Richard -Abbott 法⁵⁰は最大強度到達後,ヒズミ軟化のみら れる部分を,ヒズミ曲線の接線勾配の値を導入する ことによって可能にした。即ちこれを次式で表わし た。

$$\sigma = \frac{E_o \cdot \varepsilon}{\{1 + (E_o \cdot \varepsilon/\sigma_o)^m\}^{1/m}} + E_p \cdot \varepsilon$$
(4)

ここで各定数は図-3を参照して次のようになる。

$$E_o = E_i - E_p \tag{5}$$

 E_i は初期弾性係数, E_p は塑性係数, α お σ_o は E_p 決定時の応力であり, mは $\sigma \sim \epsilon$ 曲線の形状による パラメータである。次に $E_p = 0$ の時は,

$$\sigma = \frac{E_o \cdot \varepsilon}{\{1 + (E_o \cdot \varepsilon / \sigma_o)^m\}^{1/m}}$$
(6)

となり、弾完全塑性(elastic-perfectly plastic)

図-3 解析例で使うパラメータの取り方

図-4 B_{KS} による三軸試験(UU-Test)一例

の $\sigma \sim \epsilon$ 曲線を表わす。上式で $m = 1, E_o = \frac{1}{a}, \sigma_o = \frac{1}{4}$ とすると(3)式と同一になる。

ビズミ軟化現象は $\varepsilon \sim \sigma$ 曲線ピーク後の曲線の接線勾配 E_{ρ} の値を導入することによって表現する。 即ち, $\sigma \sim \varepsilon$ 関係の適当な 2 点 A, B を選び m や各係数を次のように定める。例えば, $\varepsilon_{a} = \frac{1}{2} \varepsilon_{b}$ とすると,

$$A^{m} - 1\frac{1}{2^{m}}(B^{m} - 1) = 0$$
⁽⁷⁾

$$E \subset C, A = E_o / (E_a - E_p), B = E_o / (E_b - E_p) \} (8)$$

 $E_a = \sigma_a / \varepsilon_a, E_b = \sigma_b / \varepsilon_b$ これより形状パラメータ m は上式(7)を満足するよ うにして決める。m が求まれば σ_b も次のようにし て決定する。

$$\sigma_o = E_o \cdot \varepsilon / (A^m - 1)^{1/m} \tag{9}$$

(2) 試料 B_{KS} による実測の解析例

実験結果の主な $\sigma \sim \varepsilon$ 曲線を示すと図-4のようで ある。この実験結果は B_{KS33} の同一試料($w_{opt} = 21$. 8%, $\gamma_{d:max} = 1.56$ g/cm³)による σ_3 を変化させた 場合を示す。図からわかるように、拘束圧 σ_3 が小さ いと破壊強度が小さく、軟化現象が著しい。この関 係はかなり系統的に表現されている。そこで、この 挙動に対する上記理論の適用を試みると、図中の点 線の如くとなる。ピークの位置に若干ズレはあるが 理論はこの実験結果をよく説明しているように思わ れる。三種の材料による混合試料であるため、試料 作製技術や実験操作方法など精度上考慮すべき点は みられたが、それらが改善されればかなり良く合う 結果が期待できると思われる。そこでベントナイト と標準砂の二種の混合による試料の実験も多数行っ たので以下に解析例を示す。

(3) 試料 Bs による実測と解析例

この試料の $\sigma \sim \epsilon$ 曲線の一例を図-5に示す。図に は試料の種類による関係が表示されている。前図同 様いずれも最大強度に達するまでにヒズミ硬化がみ られピーク後、ヒズミ軟化の現象がみられる。とこ ろでこれはベントナイト含有率が大きくなるほど顕 著である。Kondner 法ではヒズミ硬化現象は表現で きるが、軟化の挙動については表示できない。図-5 に示されているように、この試料はピーク後かなり 塑性流動し、その現象は上記理論によってよく説明 されている。またこの試料では残留応力がかなり持 続しているがこの理論にかなりの範囲まで適合して いることが認められる。なお、ヒズミが非常に大き くなる場合,残留強度はこれによって決定できない。 以上より膨潤性粘土を含むこの種の試料の挙動がか なりの範囲まで Richard-Abbott のモデルでよく説 明できることを検証した。

5. セン断強度の関係式

同一試料(Bs)について三軸圧縮試験の他に一面

図一5 Kondner と Richard-Abbott の方法 による解析と試験結果

図-6 膨潤土の含有率とEfの関係

セン断試験も行ない、それらの結果から両者の関係 を示す構成式を導くことを説明する。

まず三軸試験における各試料の最大強度 ($\sigma_1 - \sigma_3$)_f, とその時のヒズミ ε_f の比をとって次式のように定めたパラメータを考慮する。

$$(\sigma_1 - \sigma_3)_f / \varepsilon_f = E_f \tag{10}$$

これとベントナイト含有率による関係を調べる と、Bsが小さいほど強度が大きくなっていくが、そ れを式示すると、

秋田高専研究紀要第19号

$$E_f = 1.688 \times 10^4 \times \left(\frac{1}{B_s}\right)^2$$
 (11)

となることが判明した。これは図-6のようである。 これによると、(11)式はベントナイト含有率が増加す るにつれ、割線ヤング率(E_f)は連続的に減衰し、こ れが二次関数で規定されることが示されている。

一方,同一種類の試料について一面セン断試験を 行って次の結果を得た。今,含水比 Wの試料につい て最大セン断強度 r_f を求め, r_f/W をパラメータに した時のベントナイト含有率 $B_s(%)$ との関係を導 くと,

$$\tau_f / W = 0.0281 \times B_s^{1.703} \tag{12}$$

と得られる (図省略)。(11)式より

$$B_s = 129.9 \frac{1}{\sqrt{E_f}}$$
 (13)

となるからこれを(10)式に代入すると

 $\tau_f/W = 111.4 \times E_f^{-0.8515}$

$$\tau_{f} = 111.4 \times \left\{ \frac{1}{5\epsilon} (\sigma_{1} - \sigma_{3})_{f} \right\}^{-0.8515} \times W \qquad \begin{cases} (14) \\ \end{array}$$

)

となる。(14)式を図示すると図-7のようになる。この 図は W をパラメータにとっているが、一面セン断 試験で得られた W = 20%付近の r_s を各 $B_s(\%)$ について調べると、図中の〇印のようになる。図か らわかるように三軸試験と一面セン断試験の結果は 極めて良好な対応関係がみられ、両者の関係は(14)式 で整理できた。それが実験結果とよく合うことから、 本研究で提示されたものは、膨潤性地盤の強度特性 を含水比の観点から規定できた場合で、その規準に 基づけば、一面セン断試験の結果より、三軸試験の 結果を推定し得る構成式の一つであると考えられ る。

6. 結 語

以上, Na 系モンモリロナイトを多量に含むクニ ゲル 3V を使って,これと全く膨潤を示さない標準 砂,カオリナイトを混合させた試料のセン断試験を 行なった。その結果次のような事柄が判明した。 (1)本研究で用いた Brs 試料の物理試験,力学試験の 結果をヘキサダイヤグラムで示すと,ベントナイト の含有率による諸物性変化の連続性が明瞭になる が,後の三軸試験によるとこのベントナイトの含有

図一7 提案式による $\tau_f - E_f$ 関係図

率が小さいものほど大きい強度を示すことがわかっ た。

(2)ヒズミ軟化現象はベントナイト含有量が多いもの 及び os が小さいもので顕著であった。これについて Richard-Abbott 法を適用すると本研究の試料の軟 化挙動はかなりうまく説明されることが明らかにさ れた。

(3)異った操作法で求めた強度の関係を示す構成式を 導いた。これは実験結果とよく合い再現性のあるこ とを検証した。

なお, 膨潤挙動と軟化現象の関わりについては目 下検討中である。

対 文 献

- 1) 佐武。伊藤:自然災害科学資料解析研究,第8 卷,111-122,1981.
- 2) 伊藤:秋田高専研究紀要,第17号,39-44,1982.
- 3) 伊藤:土と基礎,第28巻,第2号,1980.
- M. A. Sheril, I. Ishibashi & B. W. Medhin : ASCE, GT1, 33-45, 1982.
- R. M. Richard & B. J. Abbott : ASCE, EM4, 511-515, 1975.