管路内気液二相流の水頭損失について(第3報) 一偏心こぶ部つき直管路の場合—

福田 浩・樋渡久 孝・佐々木

童

7 —

On the Head Loss of Two Phase Flow through a Pipe (3rd Report) —Case by the Straight Pipe with an Eccentric Swelling Part—

> Hiroshi Fukuda, Hisataka HIWATARI, Akira SASAKI (昭和57年10月30日受理)

1. 緒 言

著者らは、さきに、清水と空気の混合気液二相流 の水平管路系について管摩擦損失水頭を求める実験 を行ない、水平直管路については本研究紀要第14号 (1979年)に、同心こぶ部つき管路については同第 15号(1980年)にそれぞれ報告している。

直管路の途中にその管よりも直径値の大きな短管 (こぶ部)を取りつけられている場合,現実にはか ならずしも管路軸心に同心的に取りつけられている とは限らず,寸法形状の異なるこぶ部が偏心した状 態で装着していると見られる場合の方がむしろ多い ようである。

しかるに、このような場合についての管摩擦損失 水頭に関する詳細な資料は身近かに見受けられない ようである。

このような見地から、本報告では水平に置かれた 直管路の途中にその軸心に対してこぶ部を偏心させ て取りつけた場合について、こぶ部の長さを種々に 変化させることによる損失水頭におよぼす影響因子 として、気液の混合割合、管内気液の流速およびこ ぶ部取りつけ偏心方向などを取り上げ比較検討する とともに、実用的な損失水頭値を表わす実験式を求 めることを目的としたものである。

2. 実験の装置と方法

図-1に実験装置の概略を示した。

本報告の実験装置と方法は,前報とほぼ同様なの で,とくに相違する点についてのみ述べる。

直径 d =20mmの塩化ビニル製の単一水平直管路の 途中に,透明アクリル材で加工した直径 D = 120 mm 一定で長さ L =40,80,120 mmの3種のこぶ部を直 管路の軸心距離が100 mmと最大になるように段違い

昭和58年2月

に取りつけた。

なお、こぶ部の取りつけ偏心方位によってこぶ部 内の気液の流動模様が異なり、損失水頭にも差違が 表われたので軸心偏位が上向き、下向き、および水 平の三種について実験した。

こぶ部の寸法および内部流動方向について図ー2 に示した。

気水比 r は 0 から 0.7 まで 0.1 とびに, 管内流速 v は管路内圧力 Ps= 0.5 kg/cd 一定のもとで 2.5~4.5 m/sの範囲について行なった。

3. 実験の結果と考察

こぶ部のつかない単純水平直円管路内の気液二相

流に対する管摩擦損失水頭H₁を気水比 r と 流速 v の関係として実験し、得られた結果をrの偶数値を 省略し両対数表示したものを図-3 に示した。

この結果は前報と同様のもので、H₁は vの増大と ともに増加し、一定の v については r の増加につれ て減少しており、全実験を通して一定とみなせるも のである。

ここで直管路部のH₁をダルシーの次式の形で示

すこととする。

$$H_1 = \lambda \frac{l}{d} \frac{v^n}{2g} - (1)$$

管摩擦損失係数 λ は v に無関係に一定となり, v の指数値 n は 1.73 と求められた。

また, λとrとは直線関係となり

 $\lambda = 0.025 - 0.013 r$ (2)

以上のことからH1は

$$H_1 = (0.025 - 0.013 r) \frac{l}{d} \frac{v^{1.73}}{2 g} - (3)$$

と表わすことができる。

となった。

つぎに、こぶ部つき管路系の損失水頭H2を流速ッ に対し気水比 r をパラメータとして実験し得られた 結果を両対数で示すと図ー4と5のようになる。

図ー4はこぶ部長さL=80m一定とし、H₂におよ ぼすこぶ部内の流れ方向の違いの相違を示したもの で、下向き流が最もH₂が大きく、水平流が最も小さ くなり、上向き流はその中間となることが明らかと なった。

これらの示す傾向は、本実験では他のしについて

も同様となった。

図— 5 はこぶ部内の流れ方向を下向きに選んでL の違いによるH₂への影響を明らかにしたもので、 L=80, 120, 40mの順に減少している。

ここに示されたLの違いによる傾向は他のこぶ部 内流れ方向においても変らない。

以上示された結果から、こぶ部つき直管路系とし ての損失水頭H₂はつぎのように考えることができ る。

すなわち,H₂は(3)式で示された直管路部の損失 水頭H₁に設置されたこぶ部のみについての損失水

秋田高専研究紀要第18号

頭 Δ H = ζ ・ v¹/2g を加えた次式の形で表わすこと ができる。

$$H_2 = H_1 + \varDelta H - (4)$$

ここで、 *d* Hに含まれる抵抗係数くは、図一6に 示されるように v には無関係に一定となるので、こ ぶ部内の流れ方向におけるこぶ部長さのそれぞれに ついては気水比 r の関係式として

のように示される。

ここで(4)式中の v の指数値 i は全実験を通して 1.75と近似的に表わすことができるから,結局こぶ 部つき直管路系の水頭損失値は(4)式の形としてつぎ のような実験式にまとめることができる。

下向き流

$$H_{L-40} = H_{1} + (0.020 - 0.013 r) \frac{v^{1.75}}{2g} \\ H_{L-80} = H_{1} + (0.024 - 0.015 r) \frac{v^{1.75}}{2g} \\ H_{L-120} = H_{1} + (0.022 - 0.014 r) \frac{v^{1.75}}{2g}$$
 (6)

上向き流

$$H_{L=40} = H_{1} + (0.020 - 0.014 r) \frac{v^{1.75}}{2g}$$

$$H_{L=80} = H_{1} + (0.023 - 0.015 r) \frac{v^{1.75}}{2g}$$

$$H_{L=120} = H_{1} + (0.021 - 0.015 r) \frac{v^{1.75}}{2g}$$

$$(7)$$

水平流

$$H_{L-40} = H_1 + (0.018 - 0.012 r) \frac{v^{1.75}}{2g} H_{L-80} = H_1 + (0.022 - 0.024 r) \frac{v^{1.75}}{2g}$$
(8)

 $H_{L-120} = H_1 + (0.020 - 0.015 r) \frac{v^{1.75}}{2g}$

以上に示された結果より、こぶ部の形状・寸法お よび流れの方向によってこぶ部内の流動模様が異な り、損失水頭は大きな影響を受けることが明らかで ある。

このことについては、前報においてこぶ部内の気 液の流動模様を写真撮影した一連のものから H₂ と の関連を概述しているが、本報告でも写真一1にこ ぶ部長さL=80m一定で内部流れ方向による違い を、また写真-2には下向き流の場合Lによる差異 を示し、若干の考察を試みるとつぎのようになる。

- ① こぶ部寸法,流れ方向にかかわらず,流速 が小さく、気水比 r の少ない場合は,流相はき わめて単純でH2の増大には大きく影響をおよ ぼさない。
- ② rが小さい場合でもvが大きくなるにつれて こぶ内に入る気液流は噴射状の流れとなり、こ ぶ部下流側壁面と衝突し流相はきわめて複雑と なる。
- ③ rが大きい場合は vが小さいとこぶ部内での 気泡の合体が起り、上向き流れではこぶ上部に 塊状となって滞在するようになる。 vが増大するにつれて気泡の分離、拡散がおこ ってこぶ部全域で激しい流動を呈する。とくに 下向き流で顕著となり H₂ に大きな影響を与え る。
- ④ こぶ長さが小さいとこぶ部入口噴流の広がり 分散が十分に発達せずに下流面に衝突し巻き返 えす。長くなると噴流の広がりは大きくなるが、 衝突力は小さい。

本実験ではL=80mが衝突力が大きく、とく に下向き流では他の場合に比べ一段と激しい流 相を呈しH₂におよぼす影響の大きいことが推察 される。

以上のことから、こぶ部つき管路系の損失水頭H₂ は摩擦損失のみならずこぶ部の寸法および流れの方 向に起因する流相の変様による流体抵抗が大きく影 響し、単一直管路系の場合と比較し無視できないこ とになる。

前報同様H₂を表わす上記諸式の関係をより実用的 に扱うため、流速vの代りにレイノルズ数 Reを用 い、L=80mmを代表さ、せて両対数表示したのが図— 7 である。

これより、こぶ部長ざおよび流れ方位にかかわら ず各気水比とも同じ傾きを持つ直線となることから

昭和58年2月

福 田 浩·樋 渡 久 孝·佐々木 章

L = 40 mm,	D = 80 mm	一定
------------	-----------	----

	v (m/s)	0.1	0.3	0.5	0.7
	2.5				
水平線	3.5				
t er	4.5				
	2.5				
上 向 き 流	3.5				
	4.5				
	2.5				
下 向 き 流	3.5				
	4.5				
	100		写 真 1	(流れの)	方向 🗕 ————)

秋田高専研究紀要第18号

		D = 80 mm	下向き流			
L	v (m/s)	0.1	0.3	0.5	0.7	
	2.5					
80mm	3.5			-		
л () с Д	4.5					
	2.5					
120mm	3.5					
	4.5					

写真2

(流れの方向 🗕

H₂とRe数の間には次式で示される関係が成り立っ ことがわかる。

ここでkを全抵抗係数として図示すると図一8に 示すようになり、こぶ部長さおよび流れの方向によってkとRe数の関係式として次式が得られる。

 $\mathbf{k} = \mathbf{K} \cdot Re + \mathbf{D} - \mathbf{I} \mathbf{0}$

上式の係数Kと定数Dをこぶ部長さと流れの方向

- 11 -

- 12 -

について本実験の結果から計算して求めたのが表一 1である。

ここに示された表から、定数Dは気水比rの減少 とともにほぼ一定の割合で増加の傾向を示し、係数 値Kはrの増加につれてこぶ部の長さLが80、120、 40mの順に増大する。

また、L=80mmの下向き流では、他のどの場合に 比較してもKの値は大きく、L=40mmの水平流にお いて最も小さい。

このことから,本実験の範囲ではこぶ部の寸法形

N	Lmm	40		80		120	
方へ向	r	K (x10⊸6)	D (x10 ⁻²)	K (x10⁻⁵)	D (x10 ⁻²)	K (x10 ^{⊸6})	D (x10 ⁻²)
下向き流	0.1 0.3 0.5 0.7	0.32 0.56 0.66 0.92	3.28 2.83 2.60 2.07	0.25 0.15 0.12 0.04	3.80 3.74 3.33 2.90	0.34 0.30 0.44 0.40	3.46 3.39 2.87 2.48
上向き流	0.1 0.3 0.5 0.7	0.30 0.52 0.53 0.77	3.25 2.88 2.60 2.12	0.19 0.38 0.31 0.22	3.92 3.35 3.05 2.58	0.23 0.33 0.38 0.47	3.60 3.22 2.85 2.35
水 平 線	0.1 0.3 0.5 0.7	0.28 0.42 0.79 0.93	3.27 2.95 2.33 1.94	0.21 0.37 0.43 0.48	3.77 3.25 2.85 2.46	0.30 0.44 0.57 0.58	3.42 3.05 2.60 2.20

表-1

状とこぶ部内の流れ方向が損失水頭に微妙な影響を 与えることが明らかである。

4. 結 営

著者らは管路系の気液二相流による損失水頭を求 める実験を行ない先に報告しているが、本報告は前 報に引き続き同一実験手段で直円管途中にこぶ部を 偏心的に取りつけた場合の影響を明らかにするとと もに、実用的な損失水頭を求める実験式を得ること を目的として得られた結果の主なものを記述したも のである。

主な結果をまとめるとつぎのようになる。

1) こぶ部長さにより内部流れの模様が変化して れに対応して損失水頭は影響を受ける。

本実験ではL=80,120,40mの順に減少する。

- 2) こぶ部内の流れ方向により損失水頭は明らか に差異が表われ、同一寸法こぶにおいては下向 き流、上向き流、水平流の順に小さくなる。
- 3) こぶ部内のフローパターンを写真撮影および 肉眼観察することにより、こぶ部の寸法、流れ の方向による差異を明らかとし、水頭損失との 関係を概略ながら得ることができた。
- 4)気水比を含んだ損失水頭および損失係数を求 める実験式を作ることができた。

終りに,本実験を行なうにあたり,終始協力の労 を惜しまなかった当時学生の金晃成,佐藤勝儀,石 黒忠利,民谷朗,鷹觜龍一,渡辺孝の諸君に感謝の 意を表します。

参考文献

- 1)赤川浩爾,「気液二相流」コロナ社(1980)
- 2) J.Weisman, A.Husain, B.Harshe. [Two-Phase Pressure Drop Across Abrupt Area Changes and Restrictions]

University of Cincinati (1979)

 Gad.Hetsroni. [Handbook of Multiphase Systems」

McGRAW-HILLBOOK COMPANY (1982)

- 4) 植田辰洋「気液二相流」養賢堂 (1981)
- 5) A.E.Bergles, S.Ishigai. Two-Phase Flow Dynamics McGRAW-HILLBOOK COM-PANY(1979).