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1 A priori Error Estimate

We consider the effect of the rounding errors in the computed inverses. Because the j th column of

the inverse of A is the solution of Ax =e;, we consider first the bounds for the errors made in the solution
of the equations

(1) Ax=h.

The method we discuss in this paper depends on the successive transformation of the original matrix
A%into matrces A®?, A®,...,A™ such that each A% is equivalent to A"’ and the final A™ is triangular. The
error bounds are most conveniently expressed in terms of vector and matrix norms, throughout we shall
use the maximum norms.

Suppose that the data A in (1) are perturbed by the quantity dA. Then if the perturbation in the
solution x of (1) is dx we have

(2) (A4+dA) (x+dx)=b.

An estimate of the relative change in the solution can be given in terms of the relative changes in
A as follows:

Let A be non-singular and the perturbation A be so small that

I 6A || <1/1 A7l
Then if x and 6x satisfy (1) and (2) , we have

dx ) I oA |
@ TR ZTEAT/TAI TAI
where the condition number 4 is defined as
p=p (A)=1 Al -1 A].

The basic problem now is to determine the magnitude of the perturbations §A.

It is clear that ¢A depends upon the round-off errors and method of computation.

We consider the reduction to triangular form by Gausian elimination using a partial pivoting for
size. This strategy mearly determines a re-ordering of the row of A, we can assume that, without any
loss of generality, the system has been ordered so that the natural order of pivots is used.

We denote the computed elements of the k th matrix A® by a;* and the computed multipliers by
my. Then we have
min(l,J) min(l,j+1)

(4) Smualy = af)’ + I efp

k=1
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where & is the error made in computing a$’ and m;;.The element a,{" is an element of the i th pivotal
row and undergoing no further change.
Writing L for lower triangular matrix formed by the m;; augmented by a unit diagonal, and U for
the upper triangular matrix formed by the pivotal row, (4) gives
(5) LU=AY+E®+ 4+ E™=A+E
| where E® is the matrix formed by &;*. Note that this has null rows 1 to k—1 and null columns 1 to

k—2.
The solution of the equations Ax=b is now obtained by solving
LUx=b
which is performed in the two steps
Ly=b, Ux=y.
The vectors actually obtained are the exact solutions of, say,
(6) (L+6L) y=b
@) (U+6U) x=y.

The perturbations 6L and 6U arise from the finite precision arithmetic performed in solving the
triangular systems with the coefficients L and U. Upon multiplying (7) by L+ JL and using
(6) we have
(A+6A)= (L+6L) (U+6U)
From (5) , it follows that
SA=E+L(6U) 4+ (L) U+ (SL) (6U).

Since L and U are explicitly determined by the computations, their norms can also, in principle, be
obtained, we must estimate E, U and dL. We shall assume that floating-point arithmetic operations
are performed with a t-digit mantissa, and let p =max.; | a;* | . If A is non-singular and t sufficiently
large, then we have

B= (e . el 2i=Dpu (=)
(2j—1) pu (i>J)
where u=g"'"

The elements in L and 6U can be estimated from a single analysis of the error in solving any
triangular system with the same arithmetic. Assuming that scalar products are accumulated in a double
precision accumulator, we have

oL=diag (—&) , | & | <u
and
oU=diag (—u,w,) , | wy | <u.
We are now able to obtain estimates of the elements in SA. Let t be so large that nu<1. Then

the computed solution x satisfies

(A+dA) x=b
where
p(2i—1)u (i<i)
® | dau | = { 2p ju (izj)
From (8) we easily find that v
9) | A Il <pn(n+1)u

and this can be employed in (3) to obtain maxir\n‘um norm bounds on the relative error.

FEIs4E 2R

E



Takashi Yoshimura

Above results can be applied to inversion of a matrix A. Since the j th column x; of the inverse
matrx is the solution of the equation
LUx=e; ~ (j=12..n) ,
the each computed x; satsfies the realtion
(A+dA)) x;=¢;
Although the perturbation ¢A; depends on e; , but the bound of | §A; | is independent of each j.
Thus, if A is non-singular and || A™'¢A || <1, then A+ A is non-singular and

we have

| (A+6A) =A™ _ | ATOA L _ p | sA |
(10) T AT SITTAGAI =12 TeAT/TAI TAT
where

I 6A | =n(n+1)pu

2 A Posteriori Error Estimate

As shown in the following numerical experiments @ priori error bound (10) is, in general, a
tremendous overestimate for large n. Thus we consider now the a posteriori error bounds for computed
inverse.

Let A be the matrix to be inverted and let C be the computed inverse. We use a measure of error
called the residual matrix

R=AC-1L
If | R || <1, then we have
(11) I C=A*I=ICIIRI/A=TRI).
Since A and C are presumed known, we could actually compute | C |, | A and | R | in the

estimate (11) . This, of course, is what is meant by a posteriori estimate.

3 Numerical examples
We consider the numerical inversion of the following symmetric matrices.

d =1.001 i=j
A= (au) , ay ={ (l ])

1 (ixj)
2= (ay) , ay=n— | i—j|
i ijz
A= (ay) , a;= (n+1 )”2 sin ( " )
-2 i=13j)
Ai=(ay), ay= 1 (li=jl=1)
0 (li—=jIn1)

Numerical results are given in the following table.

For simplicity, we have denoted say, 4.45x10~°by4.45 (—5) . These numerical experiments were
performed with the HITAC 8250 computer. Since for this computer, =16, t,=6, and ts= 14, so we have
used u=2"%and u=2"%*for single and double precision arithmetic respectively. Moreover, we have

evaluated the relative error in the computed inverse by | R |, assuming that, in (11) , | C | is
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A, : positive definite A, : positive definite
n Al A= H P Al A=) K P
2L nuraty IR % AL nunany IR HT"—RF"-T
1A A
5] 5.00 1.60(3) 8.00(3) 1.00 19.0 2.00 38.0 5.00
4.45(—5) 7.64(-3) 3.05(—4) 6.86 1.81(—6) 4.77(-5) 3.44(-6) 1.90
2.20(—14) 1.78(—12) 5.68(—13) 25.9 2.83(—16) 1.11(—14) 1.39(—15) 4.94
10110.0 1.80(3) 1.80(4) 1.00 75.0 2.00 150. 10.0
4.47(=5) 1.72(-2) 2.90(—4) 6.48 3.32(—6)  1.91(—4) 1.44(-5) 4.33
1.46(—14) 4.00(—12) 9.77(—13) 66.9 7.42(—16) 4.44(—14) 3.35(—15) 4.52
15(15.0 1.87(3) 2.80(4) 1.00 169. 2.00 338. 15.0
4.50(—5) 2.67(-2) 5.04(—4) 11.2 7.10(—6) 4.29(—4) 2.77(—5) 3.90
1.22(—14) 6.22(—12) 1.47(—12) 120. 1.81(—15) 9.99(—14) 7.23(—15) 4.00
20)20.0 1.90(3) 3.80(4) 1.00 300. 2.00 600. 20.0
8.55(—4)  3.63(—2) 3.97(—4) 0.464 4.07(—5) 7.63(—4) 9.02(-5) 2.21
2.22(—13) 8.45(—12) 2.06(—12) 9.28 1.05(—14) 1.78(—13) 2.18(—14) 2.08
25(25.0 1.92(3) 4.80(4) 1.00 469. 2.00 938. 25.0
3.88(—4) 4.59(—2) 8.24(—4) 2.13 1.52(—4) 1.19(-3) 2.13(—4) 1.40
1.96(—13) 1.07(—11) 2.48(—-12) 12.6 1.84(—14) 2.78(—13) 4.42(—14) 2.40
A, : orthogonal A, : negative definite
512.15 2.15 4.64 2.00 4.00 4.50 18.0 2.00
1.88(—6) 2.05(—5) 2.00(—6) 1.06 1.21(—6) 4.29(—5) 3.22(—6) 2.67
9.92(—16) 4.78(—15) 1.10(-15) 1.11 2.31(—16) 9.99(—15) 8.47(—16) 3.66
1012.97 2.97 8.80 3.10 4.00 15.0 60.0 2.00
1.09(—5) 8.78(—5) 4.57(—6) 0.489 6.76(—6) 2.86(—4) 9.95(—6) 1.47
2.39(—15) 2.04(—14) 1.43(—15) 0.599 9.76(—16) 6.66(—14) 2.51(—15) 2.57
15(3.59 3.59 12.9 2.88 4.00 32.0 128. 2.00
8.78(—6) 1.48(—4) 8.26(—6) 0.941 1.38(—5) 9.16(—4) 2.45(-5) 1.77
2.11(—15) 3.45(—14) 2.49(—-15) 1.18 1.45(—15) 2.13(—13) 4.95(—15) 3.42
20(4.12 - 4.12 17.0 3.48 4.00 55.0 220. 2.00
1.22(-5) 2.73(—4) 1.14(-5) 0.935 1.99(—5) 2.10(-3) 4.18(-5 2.11
3.28(—15) 6.37(—14) 3.41(—15) 1.04 2.01(—15) 4.88(—13) 1.00(—14) 4.99
25(4.59 4.59 21.0 4.82 4.00 84.5 338. 2.00
2.38(-5) 5.27(—4) 1.65(—5)  0.694 2.68(—5) 4.03(—3) 6.10(—5) 2.28
4.21(—15) 1.23(—13) 4.28(—15) 1.02 3.03(—15) 9.38(—13) 1.49(—14) 4.91
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approximately equal to | A | ,and | R | is far smaller than unity.

From above results, we see that the accuracy of the computed inverse with double precision
arithmetic has been improved by 9 orl0 decimal places than with single precision arithmetic. For
symmetric and positive definite matrix A it can be shown that

ps=maxy; | a; | -
For any real matrix, however, from our experience, it might be expected that
p=p (n)=n
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