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1 Introduction

In investigating stable or bounded properties of solutions of a system of ordinary or functional
differential equations, the Lyapunov’s second method is very useful in that we need not find the solutions
of the equations. However, in this method, it is very difficult to find a Lyapunov function which satisfies
the conditions for stable or bounded properties in the practical problems. Therefore, it is important to
obtain weaker conditions of the Lyapunov function.

In [1] and [2], we obtained sufficient conditions for stability and asymptotic stability of solutions

of a system of differential equations

dx
= . . (1)
T f (t,x)

In a recent paper [3], J.R.Haddock has obtained some sufficient c onditions for asymptotic stability
of the equation (1) without requiring the boundedness of the function f(t,x).

For asymptotic stability, there are many interesting investigations [4] — [9].

It is the purpose of this paper to give weaker conditions for asymptotic stability.

2 Definitions and Notations

Let R* denote the interval 0<t<oo and R” denote Euclidean n-space.

For x€R” let | x| be the Euclidean norm of x, and D be a domain such that || x | < H,

H>0.

We consider a system of differential equations (1), where x is an n-dimensional vector and f(t,x)
is an n-dimensional vector function which is defined on a region in R* X R”, and is continuous in (t,x) on
R*xD.

Throughout this paper a solution through a point (t,,x,) in R*X R” will be denoted by such a form
as x(t,to,Xo) -

Before Stating the definitions we introduce the following notations.

A .real-valued function b(r) belongs to class C (b€C) if it is defined and continuous on R™.
A real-valued function b(r) belongs to class I (b&€I) if it is morotone increasing on R*.
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A real-valued function b(r) belongs to class P (b&P) if it satisfies b(r) >0 for b>0 and b(0)= 0.
Class with the above three properties is denoted by CIP.
A real-valued .function a(t,r) belongs to class C(t,r) (aeC(t,r)) if it is continuous in (t,r).
Class of two variables function which increases monotonically with respect to t for each fixed r
is denoted by I(t|r) on R*XR*.
We introduce the following definitions.
[Definition 1]
The zero solution of the system (1) is said to be stable if for any ¢ >0 and any t,&R* there exists
a 6 (to,e) >0 such that the inequality | Xo| <J(to,e) implies [ x(t,to,Xo) | <& for all t=t,.
[Definition 2]
The zero solution of the system (1) is said to be asymptotically stable if it is stable and if there
exists a & (to) >0 such that if || Xo|| <d(to), X(t,to,Xo) tends to zero as t —oo.
[Definition 3]
Let V(t,x) be a continuous scalar function defined on .an open set, and which satisfies locally a
Lipschitz condition with respect to x. Corresponding to V (t,x), we define the function

({6 %) =lm—-{ V(t+h, x+hi(t, x))— V(t, 0},
In case V(t, x) has continuous partial derivatives of the first order,
it is evident that

0 =Y 0,

Ay ”

where “+” denotes a scalar product.

3 Preliminary Results

[Theorem 1)
Suppose that there exists a Lyapunov function V (t,x) defined on R* XD, which satisfies the following
conditions;
(i) V(0=0,
(ii) a(t, Ixll )<V(tx), where ac€C(t,r), acP with respect to r and a€l(t | r),
(iii) Vi (tx)<0.
Then the zero solution of the system (1) is stable.
For the proof of this theorem, see [1].
[Theorem 2]
Suppose that the function f(t,x) is bounded, £(t,0)=0 and that there exists a Lyapunov function
V(t,x) defined on R*XD, which satisfies the following conditions;
(i) V(t0)=0,
(ii) a(t, | x| )SV(t,x), where acC(t,r), acP with respect to r and a€lI(t | 1),
(iii) Vo tx)<—c(t, I x| ), where c€C(t,r), cEP with respect to r.
Then the zero solution of the system (1) is asymptotically stable.
For the proof of this theorem, see [2].
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[Theorem 3]
Suppose that there exists function a, b, cECIP, continuous functions g, h : R*— R*—{0} , and a

Lyapunov function V (t,x) such that the following conditions are satisfied;
(i) a(lIx)svVEx)<g@®)b(lxl)
(ii) ‘wtx)<—h)c( I x] ),

Gi) [ hisye (b7'( g(”s) )) ds=co for all small 7>0. N

Then the zero solution of the system (1) is asymplotically stable.
For the proof of this theorem, see [3].

4 Result

[Theorem 4]
Suppose that therve exists a Lyapunov function V (t,x) defined on R* XD, which satisfies the following
conditions;
(i) a(t, Ix))=Vtx)<g®)b( I x| ), where acC(t,r),
acP with respect to r, a€l(t|r), beCIP, g(t) >0 and geC,
(ii) Votx)<—c(t, I x| ), where ceC(tr) and c€l(r | t),

* o, 7 _
i) [ c(sbi( T ds=co for all small 7>0.

Then the zero solution of the system (1) is asymptotically stable.
[Proof]
By Theorem 1, the zero solution of the system (1) is stable.
Let t,=0and >0 given ¢ <H and let ¢(to,e) >0 to be chosen such that | x| <& (te,e) implies
I x(t,to,%0) | <& for all t>t,.

Suppose that the zero solution of the system (1) is not asymptotically stable. Then there exists a
solution x(t,te,Xo) of the system (1) which does not tend to zero as t —oo. Since V'(t,x) <0 along the
solution x(t,to,Xo), there exists >0 such that V(t,x(t,ts,X,)) tendsto » as t—oo. This implies
Il x (t,to,X0) | =b7*( 7 ) for all t>t,. By integrating V’(t,x) along the solution

g(t)
X (t,to,Xo0), We obtain

Vitx(ttoXo)) S Vitaxo) = [ (s, Ix(9)])ds

SV(toxo) = [ e(sb™(—zs))ds
to

——o0o0 as t—oo.
Since #>0 can be made sufficiently small by choosing & small, the above inequality holds and we
have a contradiction to V=0.
Thus, we see that the zero solution of the system (1) is asymptotically stable.

[Example]
Consider ascalar equation
X
dx __ X (t>0). (2)
dt t
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For this equation, consider a Lyapunov function V(t,x) =tx>

=—x2

dx
Clearly V' (t,x) = x2+2tx m
' 1
We set the functions such that a(t,r) =-—2—tr2, g(t) =2t, b(r) =r?
Va3
and c(t,r) =
Jt+1

Then the conditions of our theorem is satisfied. Consequently, the zero solution of the system (2)

r2

is asymptotically stable.
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