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1 Accumulated round—off error

In Adams method the aporoximate values yn to the true solution y(xa) of
initial value problem

W) y=1&y) y&E)=7ye

are calculated recursively according to the following formula :

() yoa+tk—yn+k-1=h(Bxfn+k + Bx—1fn+k—1+*Bofa) n=0, 1, 2:eo
where k is a fixed integer, fm=f(Xm> ym) and xm=%X¢+mh (m=0, 1, 2, - s
and B; (j=0, 1, 2, - » k) denote real constants which do not depend on h.

We shall always assume that B, * 0.

In most cases, however, the numbers yn cannot be calculated with infinite
precision because of the finite accuracy of any computing equipment. Hence
the quantities ¥n» that are actually calculated in place of yns satisfy an
equation which we write in the form

®3) §n+k_’57'n+k—l = h {Bkf (Xn+k> ?n+k) Foeeeees + 80 f (Xn> 7n)} +éntk
n= 0, 1, 2y eeeees

where the quantity en+x is the local round—off error.

In this section, we shall study the influence of these local errors on the
accumulated round-off error rn = Yn—yas without making any speculations
about the nature of the local round-off error. Appropriate assumptions on the
local round-off errors are discussed in the next section-

We subtruct from (3) the corresponding equation (2), using

{1 (Xms Fm) = f(Zms ¥ym) =gmTIm + Om Kme (10l < 1)
where gm =g(Xm), and g(x) =1fy(x, y)» then we obtain

(4) I'n+k — Tn+k-1= h(ﬂk gn+k In+kt+ o +ﬁo gn fn)+€n+k+@n+k Khe

We shall write

fn =1 +r,®
where {rn(D}is the solution of (@) for On+x =0, and {r.‘®} is the solution for
¢n+k = 0. We shall call 1o} the primary error and ra‘® the secondary error.
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Since the secondary error, which is due to the nonlinearity of the given
differntial equation, is 0(¢), whereas the primary error must be expected to
be 0(eh~1), we may assume that for h—0 the behavior rn is governed by the
behavior ra®, and the following considerations will be directed exclusively
toward the primary error ra(».

The round-off errors depend on the number of digits carried, on the
number system employed by the machine, on the location of the decimal point
(fixed or floating operations), on the precision of the subroutines which may
be used in the evaluation of £(x, y), and on other factors. Thus the realistic
statements about the size of the round-off error that must actually be expected
in numerical integrations can be formed by the statistical methods- We
accordingly introduce the hypothesis that the local round-off errors may be
treated as random variables. According to Henrici (1], the following result
holds :

If the local round-off errors are independent variables whose mean and
variance satisfy

(6) E(em) = #p(Xm), Var (¢m) = 0°q (Xm)
where p(x) and q(x) are piecewise smooth functions,

then the accumulated round-off error is a random variable, such that

6) E(ra)= rﬁ {m (xa) +0(R)}

() Var () =% (v (xa) +0 (0}

where the function m(x) is defined by

B MmMX)=gxdm&)+pix), m&E)=0
and the function v(x)is defined by

@ vx)=2gxI)V)+qx), v(x0)=0.

2 Local round—-off error

Let x be any real number, then the floating representation of x to base 8

can be written in the form

x = {g°
where

e=(logslx|]+1, f=p"x.
If a floating number is actually represented in a computing machine, the
real number f, which be called the mantissa of x, can in general be repr-
esented only approximately. That is, let f1(x) denote the floating represe-
ntation of X, then it takes the form

x*¥=1f1(X)=x(1 +¢)
where —pl=t=e=0 for chopping
and where t is the number of digits in the mantissa.
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For the Adams method the polynomial
p(z) = zk—zk-!
has the only one essential root z=1. Thus the Adams method is strongly
stable, and the behavior rn in the Adams method is likely in a one-step

k k
method. Moreover, sincexl_.'oﬁj= 1, j%'lo Bifa+i may be considered as the

weighted mean of the quantities fa, fo+1, - » fa+x. Thus for the sake of
simplicity for notation in the following discussion we shall write
?(Xn» yn) = Bk f (Xn+k> Ya+k) +Bk-1f (Xn+k-15> Yn+k—1) +-=+B0f(Xn> ya)
which corresponds to the increment function in a one-step method.
Then the equations (2) and (3) are rewritten in the following form :
(2) yn+k = Va+k=1 + h®(Xn> yn) n =0, 1, 2,
and
3D Fa+k=F n+k=1 + b® (Xn» Fn) +€a+k n =0, 1, 2,
Whereas, according to Wilkinson (2], Van+kx are connected by a relation of
the form
Vo+k=f 1 {Fn+tk-1+ £ 1 Lh® (Xn> Fn) (1 +0n+x)]}
={¥n+k-1 + h® (Xn> Fn) (1 + Pn+1) (1 + 7Ta+1)} (1 + @n+i)-
Expanding the right hand side of the above equation and comparing with (3",
we obtain
€n+k=Yn+k—1%+k + h® (Xns Fn) (Pn+k + Tn+k + An+k)
Here the quantities @n+k> 7n+x and @n+x are considered as random variables
uniformly distributed in the range [(—§5'"t 0]
We shall call @n+ks 7n+k and Pn+x by adduced error, produced error and
inherent error respectively. If h is sufficiently small we may assume that
En+k= Vn+k—1Xn+ks

and for p(x) anb q(x) in (6) we may take y (x) and (y (x))* respectively.

3 Numerical examples

We consider the numerical solutions of the following differential equations
(i) yv=y, y(0)=1

(D y=-y, y0)=1
(iii) vy =xy, y0)=1
Gwv) vy =—xy, y(0)=1
QD) y' =~32{—'y, y(1)=1
(vi) y'=—%, y(1)=1

(vii) y =y(l-y), y(0)=0.5

These numerical experiments were performed with a HITAC 8250 computer,
using floating point arithmetic. For this computer, 8 =16, t =6, and hence
we assume that
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=—9-2 P T
2 2 and o 12 2

The above equations were solved by the third order Adams method with
h=27% The “exact” values yn were obtained by numerical computation using
double precision, and then “actual” round-off errors rn were evaluated with

Tn ='§7n_Yn'

The “experimental” round-off errors fn were calculated from the equation (4)
and the “predicted” round-off errors E (rn) =0 (rn) were calculated from the
equations (6) and (7). The values of m (xn) and v (Xxn) were found by numerical

integration (8) and (9) respectively.

The numerical results are given in the following tables (unit 10~7).

Table. | y' =y, y(0)=1;
true solution y = eX

X 0.50 1.00 1.50 2.00
Tn -6 —19 —44 -82
Tn -5 —19 —49 —110
E(ra)—o —8 —24 —57 —124
E(rn)+o -5 —18 —45 —101

Table. 3 y' =xy, y(0)=1;

. 1xe
true solution y =e?2

X - 0.50 1.00 1.50 2.00
I'n —6 —17 —43 —120
Tn -3 —11 —-33 —110
E(rn) —o -5 —14 =39 —124
E(rn) +0 -3 —11 =31 —101

Table. 5 y'=2Y . y(1)=1;
true solution y=x*

X 1.50 2.00 2.50 3.00
Tn —8 —24 —47 79
Tn -8 —29 —70 —136
E(rn) —o —10 —-35 —-80 —151
E(ra) +o -7 —26 —63 —123
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Table. 2 y =—y, y(0)=1;
true solution y = e~X

0.50 1.00 1.50 2.00

-2 =5 -7 -6
—17 -24 -3 -19
-8 -32 -9 -23
-18 —24 -3 -19

Table. 4 y' =xy, y(0)=1;
. —Lxe
true solution y = e 2

0.50 1.00 1.50 2.00

-3 -6 —6 =5
—25 —40 —33 —19

Table. 6 y =——1-, y(1)=1;

true solution y =—%f

1.50 2.00 2.50 3.00

-3 -6 -8 -1l
—19 =33 —41 —47
—31 —44 -51 —56
—20 =33 —40 —46
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Table. 7 y' =y(1—-y), y(0)=0.5;

true solution ¥ =—1—+1F

X 0.50 1.00 1.50 2.00

T'n -4 =9 —-10 -12

Tn —-16 =37 —54 —66
E(rn) —o —25 —47 —64 -—-75
E(rn) +o —16 =35 =50 -—60

The agreement between the experimental and the predicted values is
good, whereas, in the cases (ii), (iv), (vi) and (vii) the agreement between
the actual and the experimental (and hence predicted) values is not very good-
This disagreement appears to be due to the neglect of produced and inherent
errors h® (Xns yn) (Pn+k + Tn+k + n+x)-
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