96

ON A COMPLEX HYPERSURFACE
~ OF A K-SPACE

Fumio NARITA
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1. Introduction

B. Smyth proved in his thesis (1) the following

(Theorem] Let M be a complex hypersurface of a Kahlerian manifold M of
constant holomorphic sectional curvature. If M is Einstein manifold it is locally
symmetric.

In this paper, we shall prove that an Einstein complex hypersurface of a
irreducible symmetric K-space is locally symmetric.

2. *O-spaces and K-spaces

Let (M,J,g) be an almost Hermitian manifold of complex dimension n+1, and
denote the almost complex structure and the Hermitian metric of M by Jand g
respectively. By 7 we alwayo mean the Riemannian covariant differentiation
on M. An almost Hermitian manifold M is called an *O-space (or quasi-Kéhlerian
manifold) or K-spce (or Tachibana space or nearly Kéhler manifold) according
as

@D FxDY+W@ix1IY=0
or
©2.20  (xDY+(PyI)X=0 (or epuivalently (FxJ)X=0)

holds for any vector fields X and Y on 1\7[ 1t is well known that a K-space is

an *O-space.

3. Complex hypersurface of a K-space

Let (I\Z,J,g) be an almost Hermitian manifold of complex dimension n+1.

Let M be a complex hypersurface of M,i-e.» suppose that there exist a complex
analytic mapping f:M—M. Then for each x€EM we identity the tangent space
Tx(M) with f+(Tx(M))(Tf (M) by means of fx. Sinde f¥og=g and Jofy=fxo0]’
where g’ and ]’ are the Hermitian metric and the almost complex structure of M
respectively, g’ and J' are respectively identified with the restrictions of the
structures g and J to the subspace f+(Tx(M)). Asis well known, we can choose
the following special neighborhood U(x) of x fof a neighborhood U(f(x)) of f(x).
Let {U;xi} (i=1, -, 2n+2) be a system of coordinate neighborhoods of M. Then
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{U;x1} is a system of coordinate neighborhoods of M such that x2"+l=x2"+2=(Q
where xi=xiof.
We have following lemmas
(Lemma 3.1(2]) A complex hypersurface M of a K-space M is also a K-space.
Let € be a differentiable unit vector field normal to M at each point of U(x).
If X and Y are vector fields on the neighborhood U(x), we may write
(G.1)  PxY=pxY+h(X,Y)E+k(X,Y)JE,
where FxY denotes the component of l;xY tangent to M.
The identity g(&,6)=1 implies g(Fx&,£)=0 on U(x) for any vector field X on
U(x). We may therefore write
(3.2)  Txt=-AGD+X)JE,
where A(X) is tangent to M.
(Lemma 3.2(2)3 In a compelx hypersurface M of a K-space M, at any point

yEU(x) there exists an orthonormal basis {ei,**s en,Jei,**» Jen} of Ty(M) with
respect which the matrix A is diagonal of the form
4,
2,
—1,
—2,

where Aei=4iei, and AJei=—4% Jei» i=1, n.

(Lemma 3.3(2)) If R and R are the Riemannian curvature tensors of a K-space
M and a complex hypersurface M of M respectively, then for any vector fields
X,Y,Z and W on U(x) we have the following Gauss equation.

R(X,Y,Z,W)=R(X,Y,Z, W)

3.3 — {(g(AX,Z)g(AY,W)—g(AX,W)g(AY,Z))
- {g(JAX,Z)g(JAY , W) —g(JAX,W)g(JAY,Z)} ,

(Lemma 3.4]) For any pair of vectors X and Y tangent to M at a point of U(x),
we have the equations

3.9 TxAY—FyAIX—s(XDJAY +s(Y)JAX=0
(3.5 WxJAY—PyJAX +s(XDAY —s(Y)AX=0
(3.6)  Ric(X,Y)=—2g(A2X,Y)+Ric(X,Y)

(Lemm 3.5[1]]) If M is an arbitrary Riemannian manifold with metric g, then

the tensor feild P on M defined by
PX,Y,Z,W)=g(BX,Z)e(BY,W),

where B is a tensor field of type (1,1) on M, has covariant differential given

by
WvPY(X,Y,Z,W)=g((PvB)X,Z)g(BY, W) +g(BX,Z)g((pvB)Y, W).

{Theorem 1] Let M be a complex hypersurface of an Einstein K-space. If M

is an Einstein manifold, then
FxA=s(X)JA and Fx(JA)=—s(X)A
where X is any vector tangent to M at any point of U(X).
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Proof. Consider the distributions T+ and T- on U(x) defined by
T+(y)= {XeTy(M) | AX=2X}
T-(y)= {XeTy(M) | AX=-X]}

Since A?2=122 ] and 2 is a constant (see (3.6)),
0=Wx(AADY=AWxA)Y+(FxA)AY

for X, YETy(M) and yeU®). If YET+(y) then
AWPxAY+A(PxA)Y=0

Hence (PxAYYET-(y) if YET+(y), and similarly (PxA)YET+(y) if YET-(y)

for each yEUK).

By 3.4

PxA)Y=s(XDJAY where X€T-(y), YET+(y)
and

WxA)Y=s(X)JAY where XE€T+(y), YET-(y).

If XeT-(y) we have
xA)X=—FxA)JIX=JWxA)JX+PxDAJX+AWxDIX
=JWxA)JX+AFxPNIX+AWxIDIX
From (2.1) and (2.2) we have (Px]D)JX=0
Hence (FxA)X=J(PxA)JX=s(X)JAX.
Thus if X€T-(y)(resp.T+(y))and YET-(y)(resp.T+(y)) we find
Fx+vyA)X+YV)=s(X+YDJAX+Y)
=s(XDJAX +s(XDJAY +s(YDJAX +s(Y)JAY
Fx+yAEX+Y)=WxAX+FxAY+WPyA)X+WyA)Y
=s(XD)JAX+(FxA)Y+ Py A)X +s(Y)JAY
Therefore
WxAY+PyA)X=s(X)JAY+s(Y)JAX.
On the other hand, by (3.4)
FxAY—-PyA)X=s(X)JAY—-s(Y)JAX.
Hence (PxA)Y=s(X)JAY.
We prove the other formula.
If X€T-(y) we have
WxJAX=—-(PxA)JX—AWxJX)+AJ(PxX)
=—s(XJATX—-A(PxNX)=—s(X)AX
If XeT-(y)(resp.T+(y)) and YET-(y)(resp.T+(y)) we find
Fx+yJAYX+Y)=—-s(X+YAX+Y)
= —s(XDAX —s(XDAY —s(Y)AX —s(Y)AY
=WxJAX+PxJAY+WPyJAX+FyJAY
= —s(XDAX-s(MAY+WPxJAY+(PyJAIX.
Hence, by (3.5), we have (PxJA)Y=—s(X)AY
If XET(y)(resp-T+(y)) and YET +(y)(resp.T-(y)) we find
WxJADITY=WFxDAJY +1s(X)JAJY=FPxDAIY—-s(X)AJY
From JYET-(y)(resp.-T+(y))
WxJAIY=—-s(X)AJY
Hence we get (Px])AJY=0. This is 0= —2(Fx])JY(resp.AFx]JY).
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Therefore we have (Px])AY= l(VxJ)Y (resp. —Z(VxJ)Y) 0
Hence we see that
PxJAY=WxDAY +J((FrxAdY)= ]s(X)]AY——s(X)AY
We shll prove the followmg
(Theorem 2] Let M be a complex hypersurface of a 1rreduc1b1e symmetric
K-space M. If M is an Einstein then M is locally symmetric.
Proof. It suffices to show that FR=0 on U(x), where R is the curvature tensor
of M. By virture of Lemma 3.3,
R(X,Y,Z,W)=R(X,Y,Z,W)— (g(AX,Z)g(AY, W) —g(AX ,W)g(AY,Z)}
—{g(JAX,Z)g(JAY, W) —g(JAX,W)g(JAY,Z)}
=R(X,Y,Z,W)+DX,Y,Z,W) say,
where X,Y,Z,WETy(M) and yEU(x). Considering the tensor field R restricted
to M we may write
PVR=PVR+PvD
where VETy(M). Since M is locally symmetric, we have PyR=0. We know
that an irreducible symmetric space is an Einstein space. Hence, by Lemma 3.5
and Theorem 1, we see that
wvDO)X,Y,Z,W)
=s(V){—g(JAX,Z)g(AY,W)—g(AX,Z)g(JAY,W)
+g(JAX,W)g(AY,Z) +g(AX,W)g(JAY,Z)
+g(AX,Z)g(JAY , W) +g(JAX,Z)g(AY, W)
—g(AX,W)g(JAY,Z)—g(JAX,W)g(AY,Z)}
=0Q.
Hence PR=0 on U(x) or, in other woods, M is locally symmetric.
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