A Multi-stage Allocation Process
in Dynamic Programming

Shigeru Kushimoto
Takashi Yoshimura

[1) A multi-stage allocation process was first descussed in R. Bellman “Dynamic

Programming” (Princeton 1957) as follows,

Assume that we have a quantity x which we devide into two parts, y and
x—Yy, obtaining from the first quantity y a return of g (y) and the second a
return of h (x—y). And suppose that as a price for obtaining the return g (y),
the original quantity y is reduced to ay, where a is constant, o <a<1, and
similary x—y is reduced to b (x—y), o = b< 1, as the cost of obtaining h(x—y).
If we repeat this operation of allocation, then the total return is

R, %, ¥)=g(¥)+hE-y)

R, (%, v,y =g(y) +h(x=y)+g(y) +h(x:—y1)

RNGG Y, Vi YN-D =8 () +h(X =Y+ gD +hC =y)+ oo
...... +g(yNn-D+hEXN1—VN-D)
where
x;=ay+b(x-y) , 0=y=x
X=a ithGu—y) , 0=n=x

XN-1=8 YNo+D(XNL—YN2) » O YN < XN
0= YN-1= XNa
Let us now define the function
fn(x)= the maximum return obtained from an N-—stage process starting
with an initial guantity x, for n=1,2 - and x = o
Then we have the functional equation
fNnx)= max Rn(X,¥, V1, Y N-1)

{v,yi}
= max [(g(y)+hx—y)+in: (@y+bx—y))] - (1)
O=SY=X
with f,(x)=max (g(y)+hx-y)]
0SYy=X

[2] We consider the process under the assumption that additional resources are
added at each stage, from the conversion of all return g(y) + h(x—y) into
resources, as an extension of [1]) . A

Similarly, the total return for the first stage is
Rix,y)=g(+ h(x-y) , o=x=y
Let us assume that g(x) and h(x) are continuous functions of x for all x=o,

35

36

so that this maximum will always exist,
Consider now a two-stage process. If the remaining resource from the first

stage is

ay+b(x-y) , o=a<l, o=b<1
then the all of resources for the next stage are

g +h(x—y)+tay+b(x—-y) , o0=y=x
We set

g(y)+h(x—y)+ay+bx-y)= x1 = Vi+(i—V1)
for o <y,<x, and obtain as a result of this allocation the return g(y.)+
h(x;—y,) at the second stage. Then the all of resources are

R(x,y,y0= gyD+hxi—yD+ayi+bxi—y) , O0=Vi=X
and the maximum is obtained by maximizing this function of y;.

Let us proceed to the n-stage process where we repeat the above operation
of allocation y time in succession. The return from the n-stage process will
then be

Ry X, ¥V, Vi yN-D= gyn-)+hXN_1—YN-1) , 0 = YN-1= XNt
where the quantities available for subsequent allocation at the end of the first,

second, ---, (N-p) St stage are given by
X = g(M+h(x—-y)+ay+bx-y) , 0OSYy=X
x= glyD+h(xi—y)+ay+bGi—y) , o0=vi=x
XN-1= g(¥N-2) +h(XN_2—¥N-2)+2 YN +bEN,—YN-2) , 0 < YN-2= XN-2

The maximum return for the N-stage process will be obtained by maximizing
the function Rn(X,y,y1, ¥ N-1).
In this case,

fn(x)= max Rn(&X,y,y1,, YN-1) (N=23)
{y,vi}

fi(x)= max (g(yD+hEx-y)]
0Sy=X

Considering the two-stage process, we see that the return will be the return
from the only second stage, at which stage we have an amount ay+b(x—y) and
first stage return g(y)+h(x—y) left to allocate. It is clear that whatever the
value y chosen initially, this remaining amount

g(y)+h(x—y)+ay+bx-y)
must be used in the best possible manner for the remaining stage. It follows
that as a result of an initial allocation of y we will obtain a total return of
f, (g(y)+h(x—y)+ay+b(x—y)) from the second stage if y; is chosen optimally,
Then we have the expression

Rix,y,y0) = fi{g(y)+h(x—y)+ay+bx—y)}
Since y is to be chosen to yield the maximum of this expression, we derive the
recurrence relation

f,(x)= max (f {g(y¥)+hx—-y)+ay+bx—y)}]
OSY=X

Generally, using the same operation for N-stage process, we obtain the functional

equation
fn(x)= max [(fn_i{g(¥)+hE—y)+ay+bx—y)}] - (1)
0=SYy=<X
for N =2 s with
fi(x)= max (g(y)+h(x-¥)]
0=Yy=X

Using this equation, at each step of the computation, we obtain, not only
fi (%), but also yx (x). Then the solution consists of a tabulation of the sequence
of functions {yx (x)} and {fx (x)} for x=o0, k=y,2, .

T3] We consider the same problem under the assumption that a part of the

return ¢ {g(y)+h(x—y)}, o<c< 1, is added at each stage into resources,
In this case, we have
R, y)= g(y)+h(x-y)
Ry(x,y,y1) = (1—0){g(¥)+h(x—-y)} +g(y) +h(xi—y1)

RNCX, ¥, Vi, -, Y N-) = (1 =) (V) +h(X—y) + g(¥) +h(xi— y1) + -+
ot g(yN)+h(XN2— YN} +g(YN—1)+h(XN-1—YN-1>

where
X;= ay+b(x—y)+c{g(y)+h(x-y)) OSYy=X
X= ay;+b(x;—y)+c{gly) +hxi—y)} , 0=EVNE Xy
XN-1= aY N +bE N~ YN +c{g(yNp)+h(XNL—YN2)) O=SYN-2=XN-

O=YN-1=XN.

Using the same argumentation for this process, we obtain the functional

equation,
fn(x) = ga}é (1= {g(¥)+h(x—y)} +fn{ay+b(x—y) +c(g(y)
0SY=X +h&-y))}] - (D
for N =2 with

fi(x)= max (g(y)+hx-y)]
0=y =X

This case is a general form for the multi-stage allocation process. If we set

c=o0, we obtain (), and if we set c=1, we obtain ([I) , in this equation,
Example.
Find the solution in the case where
g(x)= 1—e™*
h(x)= 1—e*
a= 0.75 , b= 03 , c¢c= 0.7
x=2 , N=5

We found the optimal policy for this problem by the following flow chart

for digital computer, as follow;

37

k y X—y
1 1.35 0.65
2 1.50 0.74
3 1.60 0.84
4 1.95 0.83

1.55 1.16
f(2)= 3.57

In the case [2]), if g(x) and h(x) are both non decreasing function of x,
then fn(x) is also non decreasing function, and so the optimal policy may
be found successively at each stage. Moreover, in the above example, since
g(x) and h(x) are concave function, so fn(x) is a strictly unimodal function.
Thus, using the following flow chart 2, we can find the optimal policy more
efficiently.

Flow chart for the numerical solution. 1

39

no

|
®

L = ?
d F20 —> $24 (0
@—| _° %
htl — %
N —0 — 6
0 —> Y4 yes
l y
—-)
> £ =17 no N %
)Leo A 4
l -9 {3 +REN} Y
9(5) + {(Z-‘j‘) S>d ffﬂlf:s*z*’)’caﬂf‘«'”) Xo — x
‘€ — 2
@ A —
Y200 —
vee | XX=4p0)—> &
o« — 8
4 — &
l %, 0, 5 prinb
waA — 4 <
4
ay b Dre{IHRcY)})
L — X
no
yes | l
g — fa(®
Y — YD -l — %
Fa00. gxx) prit b4
ﬁ:O?
X+s —> X yes
STOP

40

Flow chart for the numerical solution, 2

Yeo SToP
XIZX" _,# '+ tll::a . (xﬂ__xl) — X
J’ , Xt i () —
F(4) — fma l
l F0G)
® $6)
y \no
y & «7“/ \no
IJ. — ¢ I X,— Y I Xz —>x” Xj—> X’
Xi— 22 Xa—> X1
nl—n nl—n
[fo>—fmax | [56— frex | | |
l CE [s] [fow]
() |__|___|
{Un} : Fibonacci progression.
{g(y)-l—h(x—y) when k=N
g(y)th(x—y)+ay+b(x—y) when k=1,2,-----, N-1

	02_37
	02_38
	02_39
	02_40
	02_41
	02_42

