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The Numerical Solution of Elliptic
Partial Differential Equation

Takashi Yoshimura

1. Iterative Methods

In the numerical solution by differences of boundary value problems involving
elliptic partial differential equations, one is led to consider linear systems of high
order of the form

N
Zlai,,‘ u;+d;=0 (i=1,2,..., N) (0))
i=

where u;, u,, ... ,unx are unknown and where the real numbers a;,; and d; are known,

For linear systems of the size encountered in practise the Gauss elimination
method are not practical. One is led, instead, to consider iterative methods.

The simplest of the iterative methods is the Gauss-Seidel method, where, starting
with arbitrary initial approximation to the solution, one improves this approximation
using improved values as soon as available, Thus the improvement formula is

{m+1) i-1 (m+1) N (mi
u = (=X aijy = 2 ay —di ) /a. @
j=1 j=i+1

A complete iteration consists of improving the approximate values for all unkno-
wns. Having traversed all the unknowns, one starts over again at the “first” unknown
and repeat the process until d <e, where ¢ is a prescrived tolerance and where

m
N (m) (m—1) .
dm=i=z:1|ui—ui | . | ®

In the Jacobi method one does not use improved values until after a complete
iteration. The improvement formula for this method is

(m+1) N (m)
u; = -21 bijuj  + ¢ @
1= .
i
where
—a: i /a jo= i
N i ®)
and
¢ = —d; a3 i=1,2,...,N) . (6)

By a simple modification of (2) we can make a substantial improvement in the
rate of convergence. We use the following formula :
(m+1) i—=1 (m+1) N (m) (m:
w o= { Zby o+ 2 byw te | - -1 u )
i=1 j=i+1
Here w is a parameter known as relaxation factor. This method is known as the
successive overrelaxation method. Evidently, where w=1, the successive overrelaxa-
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tion method reduces to the Gauss-Seidel method.
We may write (1) in matrix notation
Au +d =0, (8)
where A is a given NxN matrix and d is a given column matrix and where u is an
unknown column matrix.
Jacobi method may be written in the form

{m+1) (m)
u = Bu +c, ()

where B is defined in terms of A by (5) , and where c is defined by (6) .
For the successive overrelaxation method we have

(m+1) (m+1) (m) (m)
u = o (Lu + Uu +¢) — (0—1) Iu

where L + U = B where L is lower triangular, and U is upper triangular.
If we let

Lo = (I—wL)_l{U— (0—1) 1}

we have

(m+1) (m) -1

u =Lou + (I-o0l) oc. 10
Equation (9) and (10) may be written both in the form

(m+1) (m)

4 = Tu 4+ f, @

(m) (m) (m) (m)

whereu = (u;, w0, ...,uN ), f=(f,f, ...,

f is fixed, and T denotes a linear operator.

In order to investigate the convergence of the sequence u(m) defined by (11) we
study the behavior as m—oo of the error efm)= u(m) - u

where u is the true solution of (8) .

Since u = Tu + f we have, by linearity of T

(m+D ‘m) m+1 (0
e =Te =T e .
(m) .
As a mesure of error e , we use the Euclidean norm. Let Vn denote the

N-dimensional vector space of N-tuple of complex numbers, and let the Euclidean

norm of an element v= (v, Va, ..., Vvn) be defined by
N 2. 3
v = (2 1vil)? ©
. . (m) 0) o
Evidently, in order for u to converge to u for all u , it is necessary and
sufficient that for all ve Vy, we have  Lim || T v l=0.
m—co

A linear transformation T of Vy into itself is said to be convergent if for all

ve Vv Lim |T v|[=0

- M—oo

LEMMA .T is a convergent transformation if and only if all the eigenvalues of
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‘T are less than one in absolute value.
Proof: Let 2 be an eigenvalue of T, then there exists v + 0 such that Tv=2av.

m m m m
“Then T v = A v. Since Lim ||T v]| = 0, it follows that Lim |2 v| = 0.

m— 00 m—, 00

By considering nonzero component of v, we have PR 0 (m—oo) , hence | 2| <1.
THEOREM 1. If the matrix A is symmetric and positive definite, then the Gauss—

Seidel method converges for every initial vector.

Proof: Let be decomposed by writing
A=L+D+R
where L. is (left) lower triangular, D is diagonal, and R is (right) upper triangular.
Then in the Gauss-Seidel method, we have after m+ | passes through all the

equations:
(m+1) -1 (m+1) (m)
u =D (-Leu —Ru - 4d)
(m+1) (m)
or u =Hu + Md
-1 -1
where H=- O+ L) R, M=—- DO+ L

We shall show that all the eigenvalues of H are less than one in absolute value,

Since A is symmetric and positive definite,
%
L.+ D-R =D
s ... . . N 2
is diagonal, and positive definite. For, x*D x = X, aj;|xi| >0 for any vector,
i=1

Now let 2 be an eigenvalue of —H, then there exists x =+ 0 such that —Hx = 2 X,
hence Rx = 2 (D + L.) x and hence

Ax= D+Le+R)x= D+L)x+2D+Le)x=( +2) (D+Le)x.
Here 14 —1, for if 2 = —1 then | A| = 0 this is contradict.

Therefor X]—*—_:\z}—(= x* (D + L¢) x.
‘On the other hand,

x*R* = 2 x* (D + Le)* —1x* (A — R® —2x*A — Ax*R*
hence (1 + ) x*R* = 2 x*A,

‘Therefor x*R*x = A —x* AX.
1+73

Consequently

- - 2
x* (D+ Le —R*) x = (T]T71 ___2:) Xx*Ax= :—LX*AX=1—M|2 x*Ax.
1+ 2 a+Ha+n 11+ 2]

Since D + L. — R* and A are positive definite, the coefficient of x*Ax is positive.

Hence {1— |2]2>>0, and then |2 | < 1.

THEOREM 2. If the matrix A is irreducible: given any two nonempty disjoint
subsets S and T of the set W of the first N positive integers such that S + T = W,
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there exists ai; = O such that i€S and jeT, and if the matrix A is diagonl dominant:

| @i | 2 IZV' | ai,; | and for at least one value of i the strict inequality holds, Then
wH
the Jacobi method converges from any starting vector to the solution.
Proof: It is easy to show that the matrix A is nonsingular, and hence that a.
unique solution exists, For the Jacobi method we have in terms of the matrix A,

(m+1) -1 (m) -1
u = -D (Le+ R)u - D d.

-1
If we assme that there exists an eigen value i1of —D (Le+ R) , i.e. a root of
|Le + D + R| = 0 such that | 2| = 1, then evidently, the matrix L. + D + R is.
also diagonal dominant and irreducible, and hence nonsingular. Hence |L. + D + R |-

# 0, this is contradict. Therefore all the eigenvalues of D_I(Le + R) are less than
one in absolute value. And hence, by lemma, iteration scheme is convergent.

We remark that if A is diagonal dominant and irreducible and if A*= @%,) is
symmetric, where a*,; = aj; a,; /| aj,; | G,ji = 1,2,...,N), then A* is
positive definite, and hence the Gauss-Seidel method converges.

2. Partial difference equations of elliptic type

The results of preceding section can be applied to many systems of linear
equations arising from elliptic boundary value problems.

Now let us consider the following problem: given a closed bounded region Q in
Euclidean n-space with interior R and boundary S, and a function g (x) defined on
S, the problem is to find a function u (x) which is continuous in Q , twice
differentiable in R and which satisfies

Hu®)+G® =0 for xeR, 139
and

u® =g &) for xeS, {4y
where the differential operator H (u) is defined by

N 02 u adu
H (w =1{Z=:1<Aka_xﬁ+ Bkﬁk—) + Fu

It is assumed that the functions F,G,A;, ..., An,B;, ..., B, are given function
of x which are continuous and twice differentiable in Q and satisfy the conditions

Ay >0 (k=1,2,...,n), F& =0
We write H (u) in the form

H(u)=§l{aixk(Akaa_x‘:_)+ CkaaTt}JrF“’ @
where

] Ak
Ck'“"Bk“m k=1,2,...,n) .

If Ck =0 (k=1,2, ...,n) , then H is said to be self-adjoint.
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To set up our finite difference analogue we construct a rectangular net whose
x ) such that
n

3 ee e s

mnodes are points x = (x1 ; X,

X = pkhk k=1,2,...,n)

where the p,_ are integers and for each k, hk is the mesh size in the direction e -

Two nodes with coordinates p h and p’ h are adjacent if f} (p-p) =1. We
k k k k k=1 k k

denote by Qh the set of all nodes contained in Q. The set of nodes such that all

adjacent nodes belong to Qh is called the interior of Qh and is denoted by Rh, all

other nodes of Qh belong to the boundary of Qh , denoted by Sh.

The set Rh is connected if any two nodes of Rh can be connected by an unbroken

chain of segments adjoining adjacent nodes of Rh, We assume that Q has the

property that there exists h such that if for all k, hk< fl, then Rh is connected.
Let N and M denote respectively the number of nodes of Rh and Sh . To each

node of Qh we assign an integer i such that i < N implies x ® e Rh and N< i<

N+M implies x® ESh. The coordinates of x® are pk(i) hk k=1,2,...,m) .

In order to derive a difference equation analogue of (13) we replace

9 du by -2 U
T A D) h (=B | (B2A,C0) (B -1 u @)}
and Jou -1 -1
= @h) (B ~E)u(,

where the difference operator E: is defined by
a
Ek u®) =u (x+ahkek) .

Substituting in (13) and (15) we get

-2

n 1 1 n —2
kz—:_-]_u (x+hkek) {hk l:lak (x+ thek) + thck:l } +k§1u (X—hkek) {hk

(A (x—é—hk e) —%hkck ) } —u %) {kilh;z (A (x+%hkek) +A (x-

he)) -F@}+G e =0

®» @ (N
(x=x ,x)....,x ) (6

and
uE = g (x= ) @

Here g (x) =g (x) where x’ is some point of near to x, such as a nearest point.

N+D (N+M)
X X

3 e e 3

If we replace u (x(i) ) by u for i £ N we obtain a system of N linear algebraic
1

equations and N unknowns of the form (1) where, fori,j=1,2, ..., N,
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n h—z A W 1y A OIS b P @

_ai'i_k§1 e OB (x +7 &) TA (x —zhed ] —F & D,

a _, "2 ® 1 By OB )

i’j—hk [Ak (x7 +73 hkek) + zhk Ck] s if x7 =x +hkek,
—2 @ 1 1 . G _ GO

a._—hk [Ak (x —2hkek) 2hka] , if x7 =x he,

L)

a =20, if x(l) is not adjacent to x D and i3 j,
1,)

. __2 .
d =G (X(l) Y + i'h {A (x(l)
i k=1 k k

1 1 * @
+ ghkek) + zhka} g (x +hkek)
n -2 ) 1 1 * [©)
” s = _
+ 2 b {Ak (x” = h e ) 2hka} g (x7—he)

n n i
where ) and 2;” denote respectively summation over all k such that x(l) +hk e
k=1 :

G
and x D —h e are nodes of S .
k k h

Evidently a i< 0(i=1,2,...,N), and if the hk are chosen so that Rh is.
1
connected and such that
h <2 (Min A (0 / Max|C,_(x)|) k=1,2, ...,n)
xeQ xeQ
N
then |a | = X |a . | . Moreover since Q is bounded there exists i such that
] ii j=1 ij
i

@ . . N .
X D is adjacent to some node of Sh; hence |a |> X |a | , then the matrix
ii i=1 1]
1=
A= (a ) is diagonal dominant.
1)

. . . . . . . . @ G
The matrix A is also irreducible, since Rh is connected and since if x ~ and x°

are distinct nodes of Rh, then a =+ 0.
1)

If H is self-adjoint then Ck = (0(¢k=1,2,...n) . If a =+ 0and i=+j, then for
]

1,

@ @ (6)] @ -2
some k, x =X + h e or x =%  —h e . In the former case a =h A
k k k k 8 kK  k
@ 1 @ [6)] -2 @
x +72h ). Moreover x =x —he and a =h A X he)—
¢ 2 k) k k ji kK k CC + k k)
1. .. . (€)] (€)] .
2h e ] =a . Similarly if x " =x~ — h e we have a = a . Thus when H is
k k i, k k Ji ij

self-adjoint, the matrix A is symmetric.

For the Dirichlet problem we have

azu

X

H (v =él - 0.

Z
k
Since Ak=1, B = F

. 0, then Ck = 0, hence H is self-adjoint, the matrix A

is symmetric.

For the difference analogue we have
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hy
= n -2 . @ 6))]
i 2 27 h if x —x =+h e

k=1 k k k 5
1‘

. G . . )
0 if x” s mot adjacent to x

b

where the b~ are defined by (5).
L)

As an example we wish to solve the Dirichlet problem in a plane region Q. We
overlay Q with a square net with mesh size h, and we assume that the boundary
S is a closed polygon composed by mesh lines. The difference equation is

4u  —u —u —u . —u = (.
i,] i+1,j i—1,j i,j+1 ij—1

Here u = u (ih, jh) .

L]
The Jacobi method is given by

(m+1) 1 (m) (m) (m) (m)

=, (u +u +u o +u )
i, 4 i+1,j i—1, i,j+1 -1
and successive overrelaxation method is given by
(m+1) 1 (m+1) (m+1) (m) (m) (m)
u =0, 0™ - oy 2y ] < w1y
i,j+1 4 - 7i-1j i,j—1 i+1,j i+l ij

We assume that for the interior net point (i,]), i goes from 1 to IMAX, and j goes
from JL (I) to JU (D) for every I (1 =1 =<IMAX) .
The following programme is written in HARP 103 language for the HIPAC 103

computing machine.

# SUCCESSIVE OVERRELAXATION METHOD
DIMENSION U (7,7) , JL(6), JU(6)
# BOUNDARY VALUES
READO, M
DO 11 L=1, M
READO, I, J
11 READ1, U 1, D
# RANGE
READO, IMAX
DO 12 1=2, IMAX
12 READO, JL (D) , JU (D
# CONSTANTS
READ]{, EPS, OMEGA
# INITIAL VALUES
DO 13 1=2, IMAX
JMIN=JL (D)
JMAX =JU (D

33
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13

19
20

UIl=U {,JMIN—-1)

SLOPE= (U (I,JMAX+1) —UlIJ) /FLOATF (JMAX—-JMIN+2)
DO 13 J=JMIN, JMAX

UIJ=UIJ+SLOPE @

U @, =u1J

ITERATION

K=0

K=K+1

ENORM =0.

DO 15 I=2, IMAX

IMIN=JL (D

IMAX=JU (D)

DO 15 J=JMIN, JMAX

EIJ=OMEGA* (U d+1,)) +U @, J+1) +U d-1,1) +Ud,J-1) /4.-Ud, 1)
U () =U {d,) +EIJ

ENORM =ENORM+ ABSF (EIJ)

PRINT 16, ENORM

FORMAT (F15. 10)

IF (ENORM—EPS) 18, 18, 14

OUTPUT; NUMBER OF ITERATION, RESULTS
PRINTO, K

DO 19 I=2, IMAX

JMIN=JL (D)

IMAX=JU (I)

DO 19 J=JMIN, JMAX

PRINAE 20, -1, 0.~ U, I)
FORMAT (215, F15. 10)
STOP
END
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