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1. Introduction

In the application, the future behavior of many phenomena is assumed to be
descrived by the solutions of an ordinary differential equation. Implicit in this
assumption is that the future behavior is uniquely determined by the present,
independent of the past. In functional differential equations, the past exerts
its influence in a significant manner upon the future. Many models under
scrutiny are better represented by functlonal differential equations than by
ordinary differential equations.

In functional differential equations, stability and boundeness are important
problems. To apply Lyapunov’s second method to functional differential equa-
tions, one must actually use a Lyapunov functional. By using Lyapunov*func-
tional, one can extend to functional differential equations most of the well-known
results for ordinary differential equations. In fact there are many papers
concerned with stability and boundeness.

In this paper, we study stability and boundness theorems which use a
Lyapunov functional satisfying weaker conditions. The paradigm for this
endeavor, of course, is Lyapunov s second method. Before this idea can be
made more precise, some basic definitions and notations will be necessary

2. Definitions and Notations

Suppose h >0 is a given number, I = (0, »), R" is an n-dimensional space,
C(Cas bJ, R®is the Banach space of continuous functions mapping the interval
Ca, bJ into R® with the topology of uniform convergence. If Ca, bJ = (—h, 013,
we let C=C((—h, 0J, R*) and designate the norm of an element ¢ in C by
Ilgoll = suplsa(ﬂ)l If €I, A2 0 and x€C((o —h, o + A), R"), then for any t€

_h<

(o, o+ A) we lét x:€C be defined by x(8) =x(t+6), —h=6=0, i.e., the
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symbol x: will denote the restriction of any continuous function x(u) defined
on —h =u<A, to the interval (t— h, tJ. Cu will denote the set of ¢€C such
that llell = H. - :

Let x(t) denote the right-hand derivative of x(u) at u = t and consider the
functional differential equation of retarded type or simply the functional differ-
ential equation v .

() =F(t x> ' e @
where F(t, ¢ ) €R" is defined on I x Cg.

Throughout this paper, we assume that for any @ >0 there exists an
L(t, @) >0 such that if |le|l = @, we have |F(t, ¢)| =L (t, @), where
L(t, @) is continuous in t.

(Definition 1.) A function x (to» @) is said to be a solution of (1) with initial
condition ¢€Cu at t =to» to 2 0, if there is an A>>0 such that x(t,» @) is a
function from [to —h, to + A ) into R" with the properties ;

() =xe(to» ©) €Cu for to = t<to +A,
(D) %X (to> @) =90,
(iii) x(te» @) satisfies @) for to = t<to + A.
In this paper, we shall denote by x(t;te» @) the value of x(to» so) at t.

(Definition 2. ) Let V(t, ¢) be a continuous functional defined for t=0,
@€Ca. The upper right-hand derivative of V (t, ¢ )along the solutions of @) will
be denoted by V'a)(t, ¢) and is defined to be ’

V,(])(t) §0) =1i_1'13.;_é_ {V(t +5) Xt+o (tn 50)) ""V(t& {D)},
where x(to» @) is the solution of @) through (to,» ¢).

(Definition 3.) The zero solution of (1) is said to be stable if for any ¢ >0
and €I, there exists a & =8 (to» €) >0 such that if [lp]l <, we have
e Ctor @Il <e for all tzto.

(Definition 4. ) The solutions of (1) are equi-bounded, if for any @ >0 and
to€I, there exists 8 (to» @) >0 such that if o]l <&, [Ixe (to» @Il < B(to, @) for
all t = t,.

(Def1n1t1on 5.) The solutions of @) are umform—bounded, if the 8 in (De-~finition
4.) is independent of to.

3. Preliminary Results

In (13, (2) and (3], the sufficient condition for stability of functional differ-
ential equation (1) was given by L. E. El'sgol'ts, R. D. Driver and W. Hahn, as
follows. -

[Theorem 1.] The zero solution of the system (1) is stable if there exists a con-
tinuous functional V (t, @) defined on 1 x Cu which satisfies the following condi-
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tions ; :
@ Vvt, 0)=0,
G a(llell) =V (t, ¢), where a(r) is continuous, positive-definite and
monotone-increasing for 0 =<r<eo,
(i) Viay (t, ¢) =0
T. Yoshizawa proved the bounded theorem for the system (1) in (4) and (5).

[Theorem 2.] Suppose that there exists a continuous Lyapunov functional
V(t,p) defined on tE1, pES*, where S* denotes the set of ¢=C such that |9(0)]| 2H,
(H may be large) , which satisfies the following conditions;
@ alle@ 1) =V, @)=bi(1e 1) + b (llel)s where a(r), bi(r)» bu.(r)E
CI, positive for r>H and a(r) — by(r) = as r— o,
(D) Vo, 9=0.

Then, the solutions of (1) arve uniform-bounded.
For proofs of these theorems, see references.

4. Stability

Consider the system of functional differential equation (1) and suppose that
F(t, ¢) is defined and continuous on IXCu and that F(t, 0) =0 v

[Theorem 3.] Suppose that there exists a continuous Lyapunov functional
V (t,» @) defined on I1xCu which satisfies the following conditions ;
@ V(t, 0)=0
G alts llel) = V(t» @), where alts ) is continuous in (t» ) on IxCu,
a(t, =0, alt, r)>0 for r =0 and increases monotonically with respect
to t for each fixed r,
(i) Vi (t, ) =0.
Then the zero solution of the system (1) is stable.
Proof.. For any ¢>0, there exists a 6(ts» €)>0 such that [l¢||<8 (to» €) im-
plies V(ty, ¢)<<a(te» €)» because V(t, 0) =0 and V(t, ¢) is continuous.
Suppose that there exists a to<ty<<e such that [|xu(te» #)|=¢ and
lxe(tos @O <e for t€ [to» ti). By (ii),
alty, €) =alty “Xn(toa 50)”) < V(ti» x6:(tos ©)) = V(to» ¢)<a(to’ e) < alty, €).
This is a contradiction, and hence, if lloll <d(te, €), then [x:(to» @)lI<<e for
all t=to.

5. Boundedness
In this section we consider the system (1), where F(t, ¢) of (@) is defined and
continuous on IxC.

[Theorem 4.1 Suppose that there exists a continuous Lyapunov functional
V (t,e) defined on 1xS, where S is the set of ¢=C such that |lpl|l=H (H>0 may be
large), which satisfies the following conditions ;
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@D alts lel)=V(t, ¢)» where a(ts 1) is continuous in (t, 1) and a(t, r)—o
uniformly in t as r—oo,
(D Vo (ts ¢)=0.
Then, the solutions of the system (1) are equi-bounded.

Proof. Let x(to» ) be a solution of @) such that t,€I and ¢=Ce« for any a>0.
By continuity of the functional V(t, @), there is a positive constant K(te,» @)
such that if ¢€Ca, V (ts» ¢) = K(to» @). By condition (i), there exists a con-
stant f(te» @) >0 so large that K(te, @) <<a(t, B(te» @) for any t = to.
Suppose that ||xu (tor ¢) |l = B(to» @) at some t;» t:>te. By (i)

V (t1s xuultor 9)) = V(tos Xto (to» ©)) = V (to» ¢) = K (to» @), ‘which implies
a(ti» B(te» @)) = K (to» @). This contradicts the choice of B(ty, @). This
completes the proof.

[Theorem 5.) Suppose that there exists a continuous Lyapunov functional
V (t, @) defined on 1xS satisfying the following conditions ;
@ al lel) =V, o) =bel)s where alt, 1) is continuous in (t, 1),
a(t, r)— o uniformly in t as T — o and b(r) is continuous,
D Vo (t, ¢) =0.
Then the solutions of the system (1) are uniformly bounded.

Proof. Since a function b(r) is continuous, there exists a constant B(a)>0
such that b(llell) = B(a) for H=|¢lls@. By condition (i), V(t, ¢) = B(a) for
H=ll¢ll=«, we can choose a B(@) >0 so large that B (a)<a(t,Bf(a))for all t = to.
Suppose that [lxu (te» @)l = B(@) at some ti» where x (to» ¢) is a solution of sys-
tem (1) through (to» ¢). Then there exist t. and ts»
to S te <ts < t1» such that lxu(te, @)l =@, [ x(ts; tos ¢)| = B(@) and
a < ||lxe(tes @Il < B(@) for all tE(ts» ts). In virtue of condition (i), V(t, @)
is nonincreasing along the solutions of (1). Therefore,

V (ts» %3 (tor ©)) = V (tar Xi2 (tos ©)) = b (Ixell) = B(a),
which implies a (t3» f(@)) = B(«). This is a contradiction, and the theorem is
proved.

[Theorem 6.) Suppose that there exists a contiuous Lyapunov functional V(t, @)
defined on 1xS* which satisfies the following conditions ;

@ alt 1e@D =V ¢ =bi(e0)]) + bts llell), where alt, r) and

b.(ts 1) are continuous in (t, 1), positive for r>H and
! a(t, ) —be(ty T)—

uniformly in t as r— o, a(t, r) increases monotonically with respect to t for any
fixed 1, b (t, 1) is increasing function with respect to r for any fixed t and b.(r)
is continuous, positive for r>H and increasing,

G Vo, ¢)=0.
Then the solutions of the system (1) are uniformly bounded.
*Proof. For a given @>H, choose B(a)>0 so large that

by (@) + b (t, la)) <a(t, B(a)).
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Let x(to,9) be a solution of (1) such that to€I and ¢€C. Suppose there
exists ti,f1 >'te» such that llxu(te, @)l =:8(e). Then there exist ts’

and te to <t <ts < ti» such that|x(te; tor )1 =, 1x(ts; tor @) =B(a)
and that @ <|x(t;tsso)| <B(a) for; all tE(tss ts)> and:we can-assume
that | x(t; to» @)l <B(a) for all tECte, ts)» and hence [lxu(te, @Il <B(@).
For t€Clts ts)» xi(to» ®)ES* and hence, by (i)s

V (tas Xes (tos ©)) S V (tss X2 (to» ¢)). This implies

"2 (tar B(@)) = by (@) + ba(ter BCa)).

Thus, || x:(tes @) | <B(a) for all t = to» this completes the proof of the theorem.
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