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1 Introduction

Lyapunov's second method is a useful approach to the study of stability and
boundedness of solutions of ordinary differential equations. Roughly speaking,
his method involves the use of a real nonnegative function V(t, x), where t is
the independent variable and x is the dependent variable. However, it is difficult
to find the function V(t, x) satisfying certain conditions. Therefore, it is ‘
important to obtain a weak sufficient condition for stability and boundedness
theorem. In the previous paper (3], we obtained a weak sufficient condition for
a stability theorem.

The purpose of this paper is to give some sufficient condition for Lyapunov's
stability and boundedness theorem.

2 Definitions and Notations

Let I denote the interval 0 = t< e and R" denote Euclidean n-space.

For x€R", let ||x| be the Euclidean norm of x> and D is a domain such that
x|l = H, H>0.

We shall sometimes denote by Se the set of x such that ||x|| = «.

We consider a system of differential equations

dax
dt

where x is an n-dimensional vector f(t, X) is an n- ~dimensional vector functlon

=f(t’ X)a “ (1)

which is deflned on a region in I x R%, and is continuous in (t;, x) on I X D.

Throughout this paper a solution through a point ( te, x°)1n I x R* will be '_ '
denoted by such a form as x(t; Xo» to).

We introduce the following definitions.

Definition 1. The equilibrium of the system (1) is said to be stable if for any
e >0 and any to €I there exists a (o> &) >0 such that the inequality |Ix°|I<6
implies [[x(t; Xo» to )| <e for all t = to.
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Definition 2. The equilibrium of the system (1) is said to be asymptotically
stable if it is stable and if there exists a 8o(to) >0 such that if [|x]l <8x(to),
x(t; Xos to) =0 as ‘t— o, - - '

Definition 3. The equilibrium of the -system (1)‘_ is said to be quasi-equi-
asymptotically stable in the large if for any @ >0, any € >0 and to € I, there
exists a T(to, ¢ @) >0 such that if X €S8 [x(t; X0» to) [[ e for all
t 2 to + T(tes & @). !

Definition 4: The equilibrium of the system (1) is said to be equiasymptotically
stable in the large if it is stable and is quasi-equi-asymptotically stable in the
large. o

Definition 5. The solutions of the system (1) are equi-bounded, if for any @ >0
and to €I, there exists a B (to» @) >0 such that 1f Xe € Sas
Ix (t; Xos t2) |l <BC(tos @) for all t 2 to.

Definition 6. The solutions of the system (1) are uniform-bounded, if the 8in
the above Definition 5 is independent of to.

Definition 7. The solutions of the system (1) are equiultimately bounded for
bound B, if there existsa B >0 and if corresponding toany @ >0 and to€1,
there exists a T (to» @) >0 such that X0 € S« implies that [|x (t; Xe» to)|| < B
for all t=to+ T (to, @). :

Definition 8. Let V (t, Xx) be a continuous scalar function defined on an open set,
and which satisfies locally a Lipschitz condition with respect to x. Corresponding
to V(t, x), we define the function

Vo (i, x) = 11mh {(V(t+h, x+hf(t, x)—-V(t, x)}.

In case V(t, x) has continuous partial derivatives of the first order, it is evident
that

Va(t, x)— m +_6\L f(t, x)s

where “ - " denotes a scalar product.

3 Preliminary Results

[Theorem 1] Suppose that there exists a Lyapunov function V (i, x) defined on 1 xD,
which satisfies the following conditions ;

G v(t, 0)=0 and V(, x) is continuous in (t, X),

Gi) a(t, |le|) =V &, X)), where the function a (t, r) is continuous
in (tb 1) onIx D, a(t, 00=0, alt, 12 >0 for r#0 and increases monotonically
with respect to t for each fixed r,»

(i) V'a(t, x) =0.
Then the equilibrium of the system (1) is stable.

_For proof of this theorem, see reference (3].

[Theorem 2) Suppose that the maximal solution u (t) of a scalar differential equation
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((111: g(t, ), where g(t, u) is continuous on E:0=st=<T, lul<A, A>0

such that u (to) = o, (tor W) € E, stays in E-for t € (to, T).If a continuous functwn
y) with y (1) = o satzsfzes

y'@) = 11m {y G+ -—yW=gh, yi)

on (tos TJ lul <A, then we have y (1):= u(t) for t € (to» TJ.
For proof of this theorem., see reference l.

4 Stability

[Theorem 3) Suppose that £(t, x) is bounded, £(t, 0) =0 and that there exists a
Lyapunov function V (t, x) defined on 1 X D, which satisfies the following conditions;

1) V&, 0) =0 and V(t, x) is continuous in (t, X),

Gi) ats Ixl) = V&, x)s where the function a (t, 1) is continuous in
(4, 1) on Ix D, alt, 00 =0, a(t, r) >0 for r =0 and increases monotonically
with respect to t for each fixed 1,

Gi) Vol x) = —c @ [|Ixl), where the function c(t, 1) is continuous in
(tr 1) on I X D, c(t, 0) =0 and c(t, ) >0 for r =0.
Then the equilibrium of the system (1) is asymptotically stable.

Proof. By Theorem 1, the equilibrium of the system (1) is stable. Suppose the
equilibrium of the system (1) is not asymptotically stable. Then for some ¢ >0
there exists a solution x(t; Xe» to) and a divergent sequence {tk} for which
llx Ct 5 %o» to)|| = €. Since f(t,» x) is bounded, there exists a K >0 such that

(ig}f—“ < K. Therefore, on the intervals
tk—z—K—étStk+ 2K @
we heve ||x (t; Xo» to)||2—5-. We can assume that these intervals are disjoint and

t —5%{—>to by taking, if necessary, a subsequence of {tk}.

Since V'ay(ts x) = — c (t,lxll)» there exists a constant 7 >Osuch that
V'a(t, x) = — 7 on the intervals (2), and V'ax(t, x) =0 elsewhere. Therefore,

V (tx + ﬁ, x (tk + —;K—,xn, t)) = V (tos xo0) <— r——k—->— oo

as k— =, which contradicts V(t, x) 20. Thus, we see that the equilibrium of
the system (1) is asymptotically stable.

[Theorem 4) Suppose that £(t, 0) =0 and that there exists a Lyapunov function
V (t, x) defined on 1 x D, which satisfies the following conditions

G) V& 0)=0 and V(t, x) is continuous in (t; x>

Gi) a(t,lxl) = V&, x), where the function a (t, 1) is continuous in
(&) on I1xD,alt,0)=0, alt, 1) >0 for r =0 and increases monotonically
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with respect to t for each fixed t, and a(t, s(t))—0 implies s(t)-—>0 as
t— o0,
S 3D Vit x) = — c (Vi x))» where the function ¢ (r) is continuous and
monotone—increasing and c (0) =

Then the equilibrium of the system (1) is asymj)totzcally stable.

Proof. By Theorem !, the equilibrium of the system (1) is stable. By (iii),
V(t,» x(t3 Xo» to)) is monotone-decreasing s hence the limit
Vo= 1;210 V(t, x(ts Xo» to)) exists.

If Vo#0, we have c(Vo) #0, and since c(r) is monotone-increasing,
c(V(ts x(t; Xos to))) > c(Vo).
Hence V'ay(t, x) < —c (Vo). Integrating, we have
V(s x(t; Xo» 1)) — V (tos Xo) £ — ¢ (Vo) (t — to).
Thus V(t, x(t; Xo. to)) diverges to —e as t— o, which contradicts the
fact that SV x (5 %oi o)) 2 a (1% (t5%os to)ID).
It follows that Vo=0;from V (t, x(t; Xes to)) — 0, it follows that
a (t,llx (t; Xo,to)I)—0, and thus that x(t; Xo» to) >0 when t— . This proves
the theorem. : : v
[{Theorem 51 Suppose that . £(t, 0) =0 and that there exists a Lyapvnov function
V (t, x) defined on 1 x R® which satisfies the following conditions ;
@) Vi, 0=0 and V(, x) is continuons in (t, x), .
G at, Ixl) = V(t, x), where the function a(t, r) is continuous in.
(t,r), alt, 00=0, alt, 1) >0 for r >0 and increases monotonically
with respect to t for each fixed 1, and a(t, r)— o uniformly in
t as r— oo,
(i) Valt, x) = —cV (t, x), wherée ¢ >0 is a constant.
Then the equilibrium of the system (1) is equiasymptotically stable in the large.
Proof. By Theorem 1, the equilibrium of the system (1) is stable. Moreover,
the solutions of (1) are equi-bounded. This fact will be proved later (cf. §5,
Theorem 7). Hence, every solution exists in the future. Let x (t; Xo» to) be a
solution such that |xo|l = @. Applying Theorem 2, by (iii)
V() x(t5%es t0)) £ V (tor Xo)eclt—tod,
Let M (to, @) =“£I.lagzv(to, Xo),and let T (to, ¢, @) be such that ||x.] < «

M (to; a)
a (to, &) -

Suppose at some t; >to+ T, [|x (t1; Xo» to)| =¢. Then

T (to’ €, a) = _é_ ].Og

; . 1o M(to, @)
a(ti,e) =V (tyrx (b5 Xo,to)) £ V(to »Xo) e~ c(ti—to) < V (to »Xo) e T = M (to a) e loga(t"' ©)

=a (to: 5).
This contradicts the condition (ii), and hence, if [[Xol = @, [|x (t; Xo» to) | < ¢ for
all tZto+ T (to, & @), that'is, the equilibrium of the system (1) is quasi-
equiasymptotically stable in the large. This completes the proof.
[Theorem 6] Suppose that there exists a Lyapunov function V (t, x) defined on
I x R® such that a(t.lxl) = V(t, X)» where the function a(t, r) is continuous
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in (&) alt, 0)0=0,at, 1)>0 for r#0 and a(t, s(t)—0 implies
s(t)—0 as t— . Moreover, suppose that there exists a continuous scalar function
w(t, t) defined on 0=<t< oo, r=0 such that

Vit x) < w(t, V(& x)).
Then, if all solutions of

% = (t, 1), (3)

tend to zero as t— o, all solutions of (1) tend to zero.

Proof. Let x(t; Xo» to) be a solution of (1) and let r(t) be the maximal
solution of (3) such that r (to) =V (tu» Xo). Since r(t)—0 as t— o,
V(t, x(t; Xos to)) =0 as t— o, which implies that x(t; Xo» to) =0 as t— .

5 Boundedness

[Theorem 7) Suppose that there exists a Lyapunov function V (t, x) defined on
I X R® which satisfies the following conditions ;
@) alt,lxl) = V&, x)» where the function a(t, r) is continuous in
(t, r) and a(t, r)— o uniformly in t as r — o,
(i) V@, x)=0.
Then the solutions of the system (1) are equi-bounded.

Proof. For any given‘a>0, let x(t; Xo» to) be a solution of (1) such that
to€1 and Xo € Sa. Since V(t, x) is continuous, there exists a K (to» @) >0
such that if xo € Sa; V(_to, Xo) = K (to» @). By (i)» we can choose a B (to, @) >0
so large that a(t, B(tes @)) > K (to» @) for any t = to. Suppuse that
1%ty 3 %o» to)]| = B (tor @) at some ti» ti > to, By (ii)»

V (t1r x (t15Xos t0)) = V (for Xo)s
which implies a (t;» B(to» @)) = K (to» @). This contradicts the choice of
B(tor» @). Thus |x(t; xe> to)l| <B(tes @) forall t=to. This shows the equi-
boundedness of solutions of (1).

[Theorem 8) Suppose that there exists a Lyapunov function V (t, x) defined on
0=t<o, |l =R where R may be large, which satisfies the following conditions;
@ alt D=V x)=bxI), where the function a(ts r) is

continuous in (t, t) and a(t, r)— o wuniformly in t as r— o,
and the function b (r) is continuous,
Gi) Vo, x)=0.
Then the solutions of the system (1) are uniform-bounded.

Proof. By continuity of the function b (r), there exists a B () >0 such that
b(lIxlD) =B(a) for R=lxll=e. By (), V({, x) = B(a) for R=|xll=@, and we
can choose a B(@) >0 so large that a (t, B(a)) >B (@) forany t = to. Suppose
that || x (t; xos to) | = B(@) at some t. Then there exist t; and tz» to<t, <ts» such
that [1x(ti; Xo» to) | =@, || x(t2; Xo» to) | = B(a) and that
a<llx(t; %o to) | <B(a) for t& (tis t2). By () and Gid»
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a (i B(a)) =a (s | x (2 Xos to) ) = V (t2s x (t2; Xos to))

= V€t x(t15 %o t0)) < b (@)
which implies a (tz» 8(@)) < B(a). This contradicts the choice of B(@). Thus
| x (t;xos to) | <<B(a) for all t=to. This shows the uniform-boundedness of
solutions of (1).
[Theorem 9) Suppose that there exists a Lyapunov function V(t, x) defined on
I x R®, which satisfies the following conditions ;

@ alt IxlD) =V, x) for |xll = B, where the function a(t, r) is
continuous in (t,» r) and monotone-increasing with respect to t for
each fixed r and to 1t for each fixed t, and a(t, r)— o uniformly
in t as r— o,

Gi) V@, x) = —cV (&, x), where ¢ >0 is a constant.

Then the solutions of the system (1) are equiultimately bouuded for bound B.
Proof. Since V (t» x) is continuous, there exists a K (to, @) >0 such that if
Xo € Sas V (tos Xo) = K (to» @). Let x(t; Xo» to) be a solution of (1) such that

Xo € Sa. It is bounded for all t = to. Suppose that there exists some

Wt log%((:—:%g— such that I x (ti; Xe» to) || = B. From (i) and Gii)

a (tos B) =a (tu " x (t1 5 Xos to) " )=V (t1» x (t1 5 Xo» o))V (to, Xo) e~ c(t—to)

<K (tos @) € logK(th) = a(to» B).

—Ia{—((t%’g—;, we have

Il x (t; Xo» to) |<B. Thus, the solutions of (1) are equiultimately bounded for
bound B.

This is a contradiction. Therefore,if t>to + —i—log
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