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Application of Finite Element Method
for Eigenvalue Problem

Takashi Yoshimura

(Received on 31 October, 1973)

1. Approximation procedure?.?

Let R be a region with boundary d R and consider the second order steady
state problem

e)) —p(ppu) + qu=1£ in R

2 u=0 on OR
Let a(u, v) denote the bilinear form associated with the second order opera-
tor, i.e.,

a(u, v) =IR(quVV + quv) dx

for u, v in the Sobolev space H = Hs! (R), and b (u, v) denote the bilinear
form ’

b (u, v) =JRuv dx.

The weak solution form of (1) — (2) is to seek a u, € H such that

3 a(uos v)=b(f, v) Vv eH.
From (3), integrating by parts and with (2), it follows that
IR(—V(qu)+qu—f)vdx=0 Vv eEH.

Since v is an arbitrary element of H, it follows that —F (pFu) + qu — f is
orthogonal to H. _

To approximate this problem we first subdivide R into triangles (or rectan-
gles) ea.
We then choose a subspace S = S(h)C H of continuous functions which are
polynomials of degree k—1 over each element es. An approximate solution
ieS is determined from

a(@ w=>bl, v vves.
Letting @1, = , N be a basis for S, we construct an approximation in the
form
N
(4) =X w ¢i.

If the finite element approximation @ of the form (4) only approximately
satisfy (1), then the residual
r(x)=—p(ppd) +qi—f
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will not necessarily be orthogonal to H.

However, in the clasical approximation theory it is well known that the
following projection theorem holds: Let H be a Hilbert space and S a closed
subspace of H. Then for every u € H there exists a unique element 0* € S
such that |lu — 6| < |lu — @|| for all @ ¢ S, and the distance lu — @*|| is mini-
mum if and only if u— @* is orthogonal to S.

Now, we select the coefficients ui of the approx1mat1on so that r(x) is
orthogonal to the finite dimensional subspace S spanned by the interpolating
functions @i (x).

This amounts to setting

[ (=7 (pp@) + qi — )Tdx =0.

However, since vis now an arbitrary element of S, it can be expressed in the
form v =% vi¢i(x). Thus it follows that
1

(5 vi [ (=7 (o) + (qi—£)i dx =0
But (5) must hold for arbitrary coefficients vi. Therefore
er(x) $i(x)dx = J'R(—V(pVﬁ) +qi—f)gidx=0.
This is equivalent to matrix problem
KU=F
in the vector U of weights ui.
The (i, j)-th entry of the Stiffness matrix K is

J LCPPPir$i + qfi $i) dx
and the j-th entry of the source vector F is

[of#iax.

Under the usual regurarity assumptions, the error u- is of order OChk).

fn what follows we assume that our bilinear form depends on parameter 4.
That is our problem in general is to find the value 4=4,, such that there ex-
ists nontrivial u,€H, with

(6) a (e v) =2 b(u, V) VveEH,
where a (u, v) and b(u, v) be bilinear forms defined on H.

To approximate the problem we introduce a finite dimensional subspace
SCH, parameterized by h >0, and solve (6) in S. That is we seek those
complex numbers 4, such that there is a nontrivial GES satisfying the equa-
tion

)] a(l, V)I=2b(G, W VveSs.

N
Let a(x) =.Zlui #:(x) be a finite element approximation of u. Then (7) is
iz

equivalent to the matrix problem of the form
KU=2MU
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The (i, j)-th entry of the stiffness matrix K is-a (éi, ¢J) and the G, ]) ~th
entry of the mass matrix M is b(du ¢J) '

2. Finite elements’ and- mtegral formulas -

@ Tr1angu1ar element3) '

Consider triangle with nodes 1, 2, 3 whose Cartesian co-ordinates are (Xl’
Y1) i —1 2 3
We introduce basis functlons such that

¢1——————(ax+bnx+C1y) i=1,2,3

where A denotes area of triangle { 2 3, and
a1 = XeYs. ™ XaY2 SR
bi=y:— ys ) s Gl v
C; = X3 — Xz etc.
Then we obtain the following integral formulas.
1 e _[1/12 . i#]j
—A—SS $id; dxdy = 12/12 T
(e 2 5 4xdy = bibs

SS d¢i  9¢;
A ) oy oy
(ii) Rectangular element?®

dxdy = cicj

Consider a rectangle with sides parallel to co-ordinate axes, w1th nodes
numbered 1 to 4, whose co-ordinates are (xi, y:) (xi+1> vi)» (Xi+1s yi+1)s (Xi
yi+1) respectively. '

For the basis functions we introduce a piecewise bilinear polynomialsv as
61 (x, y)=Lx)1i(y)
¢ (x, y) =lix1(x)1i ()
$s(x, ¥) = lie1 () Li+1(y)
8 (x, v) =1 (x)1i+1(y)

(x = xi-1) (i — xi-1)7! Xi-1 < X <Xij
where li(x)= { (xi+1 — %) (Ri+1— xi)7! Xi < X <Xi+1

‘ 0 - X < Xi-1 OF Xi+l <X.
Then the'element matrices are '

4 2 1 2
‘[Ssqg;l'mdxd'y']:(m+1—x1§6(yi+1—yi) f ;1 i é
2 1 2 4.
_ _ 2 -2 -1 1
9 995 o (yim—yD | -2 2 1 -1
d _Gin—yi)
i) 9x 9% XdY] Exii=x0 | —1. 1 2 —2
1 -1 -2 2
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2 1 -1 =2
(| _99i 99; = Xi+1— x1) 1 2 -2 -1
[S) dy dy dxdy] 6(yi+1—yi) |1 —2 2 1

-2 —1 1 2
(iii) For the quadratic polynomial basis function in a triangular element
we have following integral formulas
6 —1 -1 -4 0 O
-1 6-1 0-4 0
1 -1 = —
TSS-¢i¢j dxdy = —l—éo—— _i (1) g 302 106 146
0—4 0 16 32 16
0 0 -4 16 16 32
12d, —4es —4e, 0 16e, 16es
—4e; 12d;, — 4e, 16es 0 16es
LSS(.SZ{LI . _gi: + g?. . a¢1) dxdy = | ~ gez —-146e1 12ds 16e, 16e; 0
e; 16e; f 32e; 32e,
16e, O 16e;, 32es f  32e
l6es 16es 0O 32e, 32e, f
where dj = bi® + ci*s ei = bjbk + cjck, f=16(d; + d. + da)

3. Numerical example

Consider a simplest eigenvalue problem
pfu+2u=0 in unit square
u=20 on the boundary.
It is well known that this problem_have eigenvalues 1 = (k?* + n?)=® and

elgenfunctlons u=— sz sink7xsinnmy (k, n =1, 2, , 3, ).

In this case (7) reduces to the linear equations

Zu,{zj (8 55 + 20 20 ) axay} = 22w {5 [pigs axay ]

i=1, 2, ceceee , N.
Here, in the case of triangular elements we have the element stiffness
matrix as

Ke = (kfj) = Ez—k— (bibj + Cici)] s

and in the case of recténgular elements, with uniform mesh h=xiv1—xi =
yi+1— yi, the element stiffness matrix is
4 -1 -2 -1
Ke=(k§)=%_l 4 -1 -2
. -2 -1 4 —1
-1 -2 -1 4

and element mass matrix is
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4 2 1 2
h |2 4 2 1
Me = (m;) = 5
SET 36y 2 4 2
2 1 2 4
Thus we obtain the matrix eigenvalue problem
KU = MU
with
Kii = T k; and Mij = I my; .
e e

Matrices K and M are sparse having only nine nonzero diagonals. We remark
that when uniform square nets are used, the finite element scheme is equi-
valent to the Polya’s finite difference scheme.®

Numerical reselts for minimum eigenvalue are as follows.

Exact ¢, = 1/4, = 0.05071 nodes elements inner nodes

triangelar element (linear polynomial)

h = 1/4 0.04443 25 32 9
h =1/8 0.04852 41 64 25

rectangular element

= 1/4 0.08414 25 16 9
= 1/5 0.04903 36 25 16
= 1/6 0.04948 49 36 25

triangular element (quadratic polynomial)

I

1/4 0.05015 25 8 9
1/8 0.05034 41 16 A 25

I

These numerical experiments have been performed on the NEAC 2200-500 at
the Tohoku University Computer Center.
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