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1. Introduction 

明

It is well-known that Lyapunov has discussed the stability of solutions of a system of 

differential equations by utilizing a scalar function satisfying some conditions. Lyapunov's 

second method is a very useful and powerful instrument in discussing the stability of the 

system of differential equations. Its power and usefulness lie in the! fact that the deci-

sion is made by investigating the differential equation itself and not by finding solutions 

of the differential equation. However， it is great difficult to find the Lyapunov func-

tion satisfying certain conditions. Therefore， it is important to obtain a weak sufficient 

condition for a stability theorem. 

In this paper， we will state some extension of Lyapunov's stability theorem. 

2. Definitions and Notations 

We shall first list some notations 

Let 1 denote the interval 0手 t<∞ and Rn denote Euclidian n-space. 

For x E Rn， let IIxll be the Euclidian norm of x， and D is a domain such that 

IIxll孟H，H>O. 

We shall denote by Co (x) the family of functions which satisfy locally a Lipschitz 

condition with respect to x. 

We consider a system of differential equations 

事=f仇 x)，
" 

( 1 ) 

where x is an n-dimensional vector and f (t， x) is n-dimensional vector function 

which is defined on a region in 1 x R n， and is continuous in (t， x) on 1 x D. 

We assume that f (t， 0 )三 O.

Throughout this paper a solution through a point (to， xo) in 1 x RU will be denoted 

by such a form as x (t; xo， to). 

We introduce the following definitions. 

， 

Definition 1. . The equilibrium of the system ( 1 ) is said to be stable if for any 

s> 0 . and any to E 1 there exists a o (to， s) > 0 such that the inequality. 11 Xo 11く5
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implies 11 x (t ;為， t心11くεforall t孟to・

Definition 2. The equilibrium of the system ( 1) is said to be uniformly stable ifδ 

of Definition 1 is independent of to・

Definition 3. The equilibrium of the system ( 1) is said to be asymptotically stable 

if it is stable and if there exists a ゐ(to)>0 such that if 11 Xo 11くゐ(to)， 

x(t; Xo. to)→o as t→∞. 

Definition 4. The equilibrium of the system ( 1 ) is said to be uniformly asymptoti-

cally stable if it is uniformly stable and there exist 00> 0 and T (s)> 0 for 

any e> 0 such that if 11 Xo 11くゐ， 11 x (t ; Xg， to) 11くe for all t註 to+T(s).

Definition 5. Let V (t， x) be a continuous scal訂 functiondefined on an open set， 

and let V (t， x)εCoくx). Corresponding to V (t， x)， we define the function 

V'(、い川〈αωバ1)バ〉バ仏(

In c伺as鴎e V(φt， x吟) has c∞刀四nt抗削t“i泊nuouspartial derivatives of the first 0町rd晶erム， i比tiぬsevident tl白la拭t 

oV ， oV 
V'ω(t， x) =-Jτ+一語玄・ f(t， x)， 

where 1/・" denotes a scalar product. 

Definition 6. A function V (t， x) is said to be positive semidefinite if we have 

V (t， x)孟oin some set S= {T孟tく∞， IIxll;孟B} with Tミto. 0くB. A function . 

W (x)， independent of t， is said to be positive definite if W (x) > 0 for all xキ 0，

IIxllくB. A function V (t， x) depending on t， is said to be positive definite if there 

exists a positive definite function W (め suchthat V (t， x)孟W (x) in some民 tS. 

Definition 7. A function V (t， x) is said to be bounded if there is a constant M>  0 

such that I V (t， x) 1くM in some set S. A bounded function V (t， x) is said to 

have an infinitesimal upper bound if， given e> 0， there exists an h > 0 such that 

IV(t， x)1くe for all t and 11 x 11くh.

Definition 8. A function V(t， x) is called decrescent if the relation limV (t， x) = 0 

for 11 x 11→ o holds uniformly in t. 

Definition 9. A real continuous function ゆ(r) belongs to c1ass K (OEK) if it is 

defined for 0孟r豆町く∞， strictly monotone-increasing， and vanishing at r = 0 . 

Definition 10. A real continuous function σくの belongs to c1ass L (σεL) if it is 

defined for 0豆町三五sく∞， strict1y decreasing and tending to zero for s→∞. 

If necessary， p訂 ametersare written as a second argument， for instance ゆ(11x 11， t). 

3. Prelim.inary Results 

Lyapunov's theorems are expres記 din various forms caused with the slight differences 
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of the conditions. Now， we classify them the following patterns. For proofs of these 

theorems， see references. 

【Stability】

【Theorem1] Suppose that there exists a Ly，ゆ unov'sfuncti，仰 V(t， x) defined仰

1 x D . which satisfi・'esthe following conditions ; 

(i) V (t， 0)三 0，

(ii) a (lIxll)孟 V(t， x)， where a (r) お C仰 tinuousincreasing， 

ρositive definite funct伽 Z，。ii) V'ω(t， x)孟 O.

Then， the equilibrium of the sY'ltem ( 1 ) is stable. (cf. (1)， (2J， (5J， (7]， (9]) 

[Theorem 2] lf a function V (t， x) exists which is definite and whose derivative 

V'ω(t， x) is a semidefinite function ω'hose sign contraη to that of V (t， x)， then the 

equilibrium 0/ the system ( 1 ) is stable. (cf. (3J， [4J， [6J， (11]) 

[Theorem 3】 Theequilibrium of the system ( 1) is stable if there exists a functi，仰 rtEK

such shat 11 xくt; Xo. to)1I < o (11 Xo 11， to) for all tミto・ (cf.(9J， (12J， (13]) 

【UniformStability】

[Theorem4】 lfcondition (ii) in Theorem 1 is reρlaced by 

(ii)' a (lIxlD孟 V(t.均三五 bCllxlD， where a (r) and b (r) are 

continuous increasing， pωitive definite functions， then the equilibrium of the system ( 1 ) 

is uniformly stable. (cf. [1]， [2J) 

[Theorem 5] The equilibrium of the system ( 1) is uniformly stable with resρect to to 

whenever a Lyaρunov function V (t， x) exists that isρositive definite， admits an infin-

itesimal ゆperbound， and has a derivative that is negative semidefinite when evaluated on 

trajectories of ( 1 ).くcf.(5J， (7]) 

【Theorem6】 Theequilibrium of the system ( 1) is uniformly stable whenever a Lyaρu-

nov function V (t， x) exists that is Tωitive definite and decrescent， and whose deriva-

tille along any trajectory suf ficiently close to the solution should be nonpositive. (cf. (8]) 

[Theorem 7】 Theequilibrium of the systemく1)is uniformly stable if there exists a 

function qi'EK such that 11 x (t;xo， to) 11 ;亘 1Jf(11 Xo 11) for all t ~ to・ (cf.(9J， (12J， 

(13]) 

【AsymptoticStability】

【Theorem8】 Underthe assumρti，仰 inTheorem 1， if V'ω(t， x)豆一c(lIxll)，
ωhere c (r) is c，仰 tinuouson (0，町 andρositive definite， and if f (t， x) is bounded， 

then the equilibrium of the system ( 1 )ゐ asymptoticallystable. (cf. (1]， (10J) 
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[Theorem 8] The equilibrium is asymρtotically stable if there exists a tositive definite， 

decrescent function V (t， x) such that its derivative for ( 1) is negative definite. 

(cf. (4)， (6)， (9]) 

[Theorem 10] $uρρose that there exists a functi，仰 V(t， x) defined for t ~ to， 

IIxll ;亘 H continuous， and with the following proρerties ， 

(i) Vくt，0)三 0，

129 

(ii) V (t， x)ミ a(JJxll)， where a (0) = 0 and a (r) is continuous 

and monoto附 -increasing，

(iii) V'ω(t， x) 豆一c(V (t， x))， where c (r) is c<側tinuonsand 

monotone-increasing， c ( 0) = O. Then the equilibrium of the system ( 1 ) is asymρωtically 

stable. C cf. (2)) 

[Theorem 11] If a function V (t， x) exists which is definite， and has an infinitesimal 

uρρer bound， if the derivatzve V'ω(t， x) is also a definite function whose sign is con-

trary to that of V (t， x)， then the equilibrium of the system ( 1 ) is asymρtotically stable. 

(cf. (3J， (11]) 

[Theorem 12】 Theequilibrium of the systern ( 1 ) is asymρtotically stable if there are tωo 

functions ゆEK and σεL such that 

JJx (t; xo， to) JJ豆り (JJxoll，to)σ(t-to， to) f01' all tよto.(cf. (9J， [12J， (13]) 

【UniformlyAsymptotic Stability】

[Theorem 13] Under the same assumρtionsω zn Theorem 3， if V'(1)(t， x)三三一c(lIxll)，
where c (r) is continuous 0η[0， HJ and isρositive definite， then the equilibrium of 

the system C 1 ) is uniformly asymρtotically stable. (cf. (1]， [2J， (5J， (8)) 

[Theorem 14】 Underthe same assumptions as in Theorem 3， zf 
Vω'(t， x)豆一cV(t，x)， 

where c > 0 is a constant， then the equilibrium of the system ( 1 ) is uniformly 

asymρωtically stable. (cf. (1]) 

[Theorem 15] $uρρose that there exists a Lyaρunov function V (t， x) defined on t E 1， 

JJxJJ;豆H，which satisfies the following conditions ; 

，くi) a CJJxJJ)壬 V(t， x)豆 b(lIxJJ) ， where a (r) and b (r) are c仰 ti-

nuous increasing，ρositive definite functions. 

(ii) V'ω(t， x) + V*くt，x)→ o uniformly on 0くマ三三 IIxJJ孟 H， for 

o anyマ， as t→∞， where V*(t， x) is continuous and there exists a continuous function 

c(r)>O for 0くr豆H such that c (JJxJJ)壬 Vべt，x). Then， if the equilibrium of the 

system C 1 ) is unique to the right， it is uniformly asymρtoticall y stable. (cf， (1]). 

[Theorem 16】 Suρρosethat there exi$ts a function V (t， x) with the ρroρerties 

(i) a (t， IIxJJ)孟 V(t， x)豆 b(JJxll)， 

(ii) V'(l) (t， x)豆一c(t， JJxJJ)， 

where b (r) is co叫 inuous，monot，ωze-increasing， b (0) = 0， and a (t， r)， c(t， r)‘are 
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continuous and such that for every pair 0くα孟FくH there exists IJ (α，め孟 o.
k(α. {1) > 0 such that a (t. r) > k (α• s). c (t. r) > k (α，め for α 孟 r~ {1.

tミ-:， IJ(α，め.Then the equilibrium of the system ( 1) is uniformlyωymρtotically stable. 

く.cf.[2]) 

【Theorem17】 Theequilibrium of the system (1) is uniformly asymρtotically stable if 

there are t1lω functions lJf E K  and p E L such that the inequality 

IIx (t ; Xo. to) 11三五 lJf(1lxolD P (t-t心

holds for all t孟to. ρrovidedthe initial ρoint Xo satisfies IIxoll ;亘 H. (cf. [9J. [12J. [13]) 

4. Generalization of Lyapunov's Stability TheoreD1 

[Theorem】 Sゅρoset.加tthere exists a Lyaρunov f伽 ction V (t. x) defined側 1x D. 

:t 

which satisfies the following conditiottS ; ポ

くi) V (t. 0) == 0 and V (t. x) is c，仰 tinuousin くt.x). 

(ii) a (t. IIxlD孟V(t. x). where the function a (t. r) is c，側 tinuous

in (t. r) on 1 x D. a (t. 0) == O. a (t. r) > 0 for rキo and increases monotonically 

ωith respect to t for each fixed r. 

くiii) V'ω(t. x)孟o.

Then the equilibrium of the system ( 1 ) is stable. 

Proof. Corresponding to any e > o.εくH. we have a (t. e)話 Vくt，x) for t E 1 

and x such that 11 x，1I = e. For a fixed to E 1. we can choose a d (to• s) such that 

IIxollくδ implies V (to• :xゆく a (to. e). where o (to• e)くε. because Vく，t. 0)三 oand 

V (t. x) is continuous. We suppose that a solution x (t ; Xo. to) of出esystem (1) 

such that IIxollくd satisfies IIx (t1 ; Xo. to) 11 =ε. where t1= inf {tlllx(t ; Xo. to) 11 =ε}. 

From the condition (iii). it follows that V (tll xくし.Xo. tρ) 孟 V(to• x 0) and hence 

we have 

a (tlo ε) 三五 Vくtll X (t1; 為. to)) 孟 V (to• xo) く aくto.E.). 

This contradicts the ∞ndition (ii). and hence. if IIxolIくd(to. e). then IIx (t ; Xo. to)1Iくa

for all t ~ to. that is， the equilibrium of the system ( 1 ) is stable. 

Example. 

In the equation 

dx x 
dt t くt>O)， (2) 

制 V供品=tx2 and a (川xll)=+t IIx1l2. V(t. x) 叫 sfiesthe conditions in our 

theorem. In fact. 

V'ωくt，X)=X2+2txFE=ー が 孟 o.
dt 

Therefore， the equilibrium of the system (2) is stable. 
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