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1. Introduction

We shall consider the Sturm-Liouville problem

(t:1)- Ly+ary=(py)'—qy+iry=0 a<x<h,

(1.2) ay@—ap@)y'(@)=0, By)+apb)y'(B)=0,

with p and r positive, q nonnegative on[a,b), and p piecewise continuously differentiable;
p and q piecewise continuous on (a,b]. Also a;>0, 8=>0.

Since equation (1.1) may be reduced to the form of equation
(1.3) Ly+iry=y’—qy+iry=0 | '
by a transformation of the variables, we may assume without loss of generality that p(x)
=1. "

It is known that this problem has positive eigenvalues A, <2, - and corresponding
eigenfunctions y;, v, - , which are continuously differentiable and have a continuous
second derivative at each point of continuity of r and q.

In the following sections, for the numerical solution, we subdivide the interval a<x<b
by a mesh of points

41 a=x <K< veeeee <Xx=b,
where x;=a+ih (i=0, 1, 2, - , N) h= I_\_T
2. Spline function methodm

We seek an interpolating spline function S(x) which is continuous together with its

first and second derivatives on (a,b), coinsides with a cubic in each subinterval x;_ ,<x<

x5 (=1, 2, = , N), and satisfies S(x;)=y; (=0, 1, - , N). Let S"(x;)=M; (=0, 1,
...... R N)’ then
M —x)3 X—X;_)* M;h — hM;._.

. S0= Moty MO (M) oy (Vi ).
(x5—%)

and :

2.2 S,(X)=_Mj . (XJ X) +M; (x_xj—1)2 + Yi—Via _ MJ—MJ-I_h.

2h h 6

From the continuity of S’(x) at x;, we have

2.3 "%‘Mj—l'!'zM,j+_;“Mj+l=3h_2(y5—l_2yj+Yj+l) G=1, 2, == , N—=1).

This is a linear system with N—1 equations in N+1 unknowns M,, M;, -« , My, therefore

two additional conditions are needed. For S/(a)=y’(a) and S/(b)=y’(b) we obtain the
relations

(2.4) 2M0+M1="‘g—( y';yo —Ylo), My_1+2My= g (y’N— YN—hyN" )
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Equations (2.3) and (2.4) are written as

2 1 Q eeeee 0 0 0 M, d,
1/2 2 1/2: 0 0 0 M, d
(2.5) 0 1/2 2 - 0 0 0 Mz _ dz

0 0 0--1/2 2 1/2||Mya| |dna
0 0 0 0 1 2 M, dx
where d; (j=0, 1, - , N) represents the right hand member of (2.3) and (2.4).
For the problem (1.3) with (1.2), let us introduce the cardinal splines, which are a set
of N+3 independent splines forminig a basis for all cubic splines on the mesh 4, We
define these in the following way :

Ac(x) (k=0, 1, - , N) and By(x) (k=0, N) are cubic function on 4 with
2.6) Ac(xp)=0; (=0, 1, - » N), Aw(xi)=0 (i=0, N) k=0, 1, - » N
Bi(xp)=0 (=0, 1, - , N), BJd(xi)=6u (i=0, N) k=0 and N.

Here d,; is the Kronecker delta.

We may express the spline satisfying end conditions (2.4) and interpolating on 4 to the
solution of the differential equation (1.3) in the form

@D Z YEDAG+Y @B +Y BB,
Substituting (2.7) into (1.3) we form the equation
2.8) % YOLAG)+Y@LBG)+' (LB +2r{ X yx)AX)+Y/@Bix)+y (bIBx) | ~

Thus the ordinates y(x))=y; (j=0, 1, - , N) and the slopes y'(a)=y,, y'(b)=y'x
satisfy the equations

—a, a; 0 e 0 0 ¥ 0 Vo
0 (X0) A" (X0) — Qo Ay'(Xg) <o Ax"(x0) Bx"(%0) || Vo r(Xo) Yo
BOH(XI) Ao"(xx) Al”(xl) —qy e AN"(X)) Bx"(x1) 3{1 ——2 r(xy) 1
Bo”(XN ) A (XN) Al"(XN) """ Ay (xn)—ax By’(xx) };N r(xx) };N
0 0 0 e B B ¥'n 0’ tyy

From the Fq. (2.5), we have

(X)) A (%) A"(Xg) oo Ay'(%9) Bn"(x0)
By (x1) Ao"(xl) A(Ry) oo AN"(xl) BN"(Xl)
. . =A"1,
By (xn-1) Ao"<XN D A(xn_ 1) AN"(XN_l) BN”(XN 1)
Bo”(XN) Ao”<xN> Ax’l(xN) ...... AhIlCXN) BN"(XN)

—6/h —6/x* 6/x* e o 0 0 O

0 3/ —6/n® 3/n2 e 0 0 0 0
0 0 ‘0 """ 3/nt —6/u? 3/n* O
0 0 [ 0 6/n —6/n* 6/n

where A is the coefficient matrix in (2.5).
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3. Finite element method

Consider a typical element e (i, e,, subinterval) with nodes i, j (for the case of equal
intervals, j=i+1). The ordinates within an interval have to be uniquely defined by two
nodal parameters of the element, which are listed as a vector

@0 we={

The simplest representation is clearly given by linear polynomial

(3.2) y=a;+aXx,

The two constants «; can be evaluated solving simultaneous equations
Vi=ay+ Xy

@.8) {Yj=a1+a2xj

and we obtain

3.4 Y=TJ-1—XT{(XJ—X')Y1+(X—X1)YJ}.

It is well known that equation (1.3) with (1.2) is the Euler condition that the integral
by b
@3.5) J (y)=Sa{(y’)’+qy’}dx—lgary”dx
be an extremal.

If the unknown function y is defined, element by element, in the form (3.4)
where y; etc, are the nodal parameters, approximate minimization can be carried out,
First, we evaluate the element contribution. For any node we can write, by
differentiating Eq. (3.5)

aJe . 0y’ oy oy }
9 _ 9y 9Y v %Y
3.6 5, ZS{Y By, T Gy~ Ay gy dx.
Assuming that q and r are constant in the element e, we have for the whole element

e )2 —_ 2
—gJ—— 1+ (q—r1) Ki=x)? -1 +(q-—r)—-——(xi Xy
Tt o ’ ° L |or
a{y}e - aJe [— X;—Xi (xi—x;)? (x—%;)?
Finaly, assembling of the whole set of minizing equations, we have
A __Hry) =
v} H{y}=0
with . . . . A
2 ( 2 2
H=|—1+ (@—1i-u -%— 2+{(q—r)l-n+CQ' r)ii+1}%~' -1 +(q—1')u+th

Here f;,, represents f (x*) where x* is some point in (%, Xi+].

4. Numerical procedure

In any method which we have described above, the differential problem (1.3) with
(1.2) is reduced to the algebraic eigenvalue problem of the form

(4.1) Ay=1By.
If the matrix A is nonsingular, equation (4.1) is rewritten in the form

(4.2) ABy=py
FAFM84E 2 B
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where y=%, and we can use the Eberlein method for obtaining the eigenvalue and the
32

corresponding eigenfunction.

. For example, we consider the problem

2
“4.3) ¥+ sy Y=0, y@=y(=0. - : :
n’r? 1

It is easily seen that the analytical solution is '2“=_'(log2')7 +—4— and
i, 1
Va=(1+x)72 sin (m_ogk()lg_;—_x))

In the spline method .the matrices A and B are (N+3)x (N+3). In the finite elemént
method A and B are (N—1)x (N—1) tridiagonal matrices of the form

12 h? n
B=|.- Tizqi .-sh (ri—li+ril+1)_3" ity _6. N

Remark In the case of q(x)=0 and y(a)=y(b)=0, using the spline method
Eq. (1.3) can be reduced to
M;+2r5y;=0 G=1, 2, = , N—1).
Thus from Eq. (2.3) we obtain

Vi ) ) ) Yia
e =1 2 =] e ) vi | =2 %‘l‘i-l *23£I'| _lg_rm (Yi

Vi Vit
One should note that this modified equation is very close to that of finite element

method,

The numerical result for the smallest eigenvalue and corresponding eigenfunction is as

follows:
spline method _ finite element ' analytical ' initial value
(modified method) method | solution method
2 20,98 ! 20,43 ; 20.79 : 20.799
o 0.1630 0.1632 l 0. 1642 0.1643
Vo | 0,2998 0.3002 5 0.3013 0.3013
s 0.3947 0.3950 : 0.3957 0.3958
Vi 0.4417 0.4418 i 0.4420 0. 4420
s 0.4422 . 0. 4421 f 0.4418 0.4417
Ve 0.4018 ‘ 0.4015 i 0. 4009 0.4008
Ve 0.3286 0.3282 0.3275 0.3274
Vs 0.2315 i 0.2312 j 0.2306 0.2305
Vo 0.1193 } 0.1191 g 0.1188 | 0.1187
IT (246 ) i 4 IT: number of
used 38337 ' 5 297 '~—g 1terat1?n for i
time (sec) (5.489) > i Eberlein I

These numerical experiments have been performed on the NEAC 2200-500 at the Tohoku
HHEERRRES S S
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University Computer Center,

4]
5. Inmitial-value methoé

Since the procedure which described above have error that is ((h?), we now consider
more higher order accurate approximations, We may reduce the Sturm-Liouville problem
(1.3) with (1.2) to initial-value problem:

Ly+ary=0,
ay(@—ay'(@=0, ny@-ny'@=1.

If 5, and 7, are any constants such that al,—eyy, 250, then a unique nontrivial solution
of the initial-value problem (5.1) exists. We denote this solution by y(4;x) and consider
the equation
(5.2) #D=ByA;b)+By'(2;b)=0.

To approximate the solution of the initial-value problem (5.1), we first replace it by

G.1D

an equivalent first-order system such as

w'(x)=v(x), u(a) =ﬁ

(5.3)
v(x)=[ax)—aw&x)Jux), v@)=—3N

X — a2
Then the equation (5.2) can be written as
6.9 sD=Bu@;b)+pv(2;b)=0.
For computing a root of (5.4), we use the Newton’s iteration method

RO
(5.5) 2@t =4 ) — “iﬁ;;— v=0, 1, 2, +r-eer ,
with 1,® =arbitrary,

The derivative ¢(2) is given by
(5.6)  $ND=LEA;D)+B(2b)
where ¢ and 7 are the solution of
.7 §=n, £(@)=0

7' =[qx)—Ar(x))§—rx)u(x), 7n(a)=0.

Thus while solving the initial-value problem (5.3) numericaly to compute an
approximation to ¢(2,?), we also solve (5.7) numericaly to compute an approximation to
qi(znm)_

We can perform this numerical procedure with modified Adams method together with
the Runge-Kutta method for starting values, which have order of accuracy 4,

For the problem (4.3), the numerical result is shown in above table, we have used the

result of finite element method for an initial guess 1,
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