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Influence of Joints on Rock Mass Behavior
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1. Preface

Major problems in rock mechanics can’t be avoided, especially the situations of
discontinuities and anisotropies of rock masses, For these problems, we have several
questions, most of which have already been analyzed by former researchers, A partial
description is as follows: '

1) will whether failure take place along the weakness plane under the applied stresses ?
2) under which stress conditions will failure take place along the weakness planes ?

These are the most common problems, and now yet it is important to judge dangerous
direction of weakness planes with respect to a stress system, To a joint system repre—
sented by Coulomb-Navier’ s criterion, the coefficient of joint is applied, and in the
final section concerning the laboratory test, several possible results are represented,

2. Theories of Stress Conditions in a Weakness Plane

It is important to find the condition of failure which may occur in the weakness planes
such as seams, joints and faults., In such weakness planes, if the shear strength is sub-
ject to Coulomb-Navier’'s criterion, the following equation often used;

Sy = Gy + ¢ tang, ' @. 1D
where, S; : the shear strength of the solid_ (rock),
C, : the cohesion of the rock,
¢ : the angle of internal friction for rock,
¢ : the normal stress across the plane,
If ¢ is the shear stress, the condition for failure is given by
|z] =2 Cy + o tang, Q2.2

Accordance with Jaeger’'s consideration(,l) with respect to a system of weakness pkine in
a two dimension like Fig, 1, let C = cohesion of joint filling materials, ¢ = angle of
internal friction, we get instead of eq. (2. 2)

|z] = C + otan ¢ @. 3
Let’s average normal stress ¢,, and maximum' shear: Stress ‘tmax, ' /7 . c
Gy = 1T 05 L St T o Q.8
2 ) 2

in which, principal stresses o,>0; (positive shows compression), Lt
consequently, the shear stress and. normal stress at the weakness plane which is:inclined
B to the maximum principal stress, as shown in Fig. 1,
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' T I = Tmax SiN2a

les

0 = 0Oav + Tmax COS2 &

homogeneous rock takes place failure when f(a) = ¢ — o tan ¢ approaches to a maximum
value, from af (a)/da = 0

a = 450 —_— ? (2. 6)
Substituting eq. (2. ,5)’ (2. 6) to (2. 3), the condition for failure along the weakness
plane can be gotien as:
Tmax = (6av + C .« cotyp) sing/sin (2a+¢)
= (6av + C - cotp) tand @.n

in which, tang = - Sine
sin Qa + ¢)

0,=0, __|

(%) B

=l T 1T

41

Fig. 1 Stress diagram in a weakness plane
and eq. (2.7) can be rewritten as follows:

o1 [(sin Qa+¢) — sing) — o; (sin Qa+o)

+ sing)] =2C . cosp 2. 8
or o1c08 (a+¢) sina — o38in (a+¢) cosa = C - cotp 2.9
®)
Talobre J. gives next eqaution in the case of § = —g— - a

gy sin (p—PB) cosf + a3cos (p—P) sinf + C.cotp < 0
In the case of smooth horizontal surface, from eq. (2. 5),

cos2a =J1—Sin‘2a——— 1/1 _

T2mn.x

Substitution of this in the 2nd of eq. (2. 5) gives

— T Té-—
6 — Owy = Tmax Jl —_ t2mux
lmax = (‘7 - Uav)z + 72 (12.10)
@ . X
Eq. (2.10) means the equation of circle having a radius Tmax =—;— (a1 — 03)
and centered on the ¢ — axis at g., = —%— (a1 + 03)

When ¢ = (°, giving g =0 & v =0.
In the above equations, if C = 0, then mechanically,
|z] = o tane

HKESERARER S 5



Influenec of Joints on Rock Mass Behavior 97

The condition of failure in the weakness plane will be :

max 2 llv—‘._Sirl—SD_‘—
fmax = Fuv gy Q2a + ¢) 1 Q2.1
or ai(sin (2a+¢) — sing] — o; [sin (2a + ¢) + sinp] = 0 [
If ¢ = 0, then the condition for failure depends upon cohesion, |[r| = C, similarly,
2-C
(61 — a3) = 5
sin? a
2.12)
or Tmax = —.
= sin2a«

Jaeger (1960)(2’has considered the effect of a more general type of anisotropy upon shear
failure, In the more general case, he assumed that the cohesive strength of the material
is equal to the cohesive strength of the weakness plane and the least value lies on the
weakness plane. On the other hand, a maximum value rotates through a further 90°,
Thus when the cohesive strength in the weaknwss plane inclines § to the maximum
principal stress it then becomes :

C=C —Cycos2 (w — B 2.13)

Hence, when the cohesive strength in the plane which is inclined w to the maximum
stress has a minimum value C; — C, when @ = 8, and a maximum value of C, + C, then
the plane of anisotropy is rotated through a further 90°. Using this expression for the
cohesive strength, the condition of failure becomes :

|[t] = C; — C,cos2 (w — B) + o tan ¢ (2.14)

We can rewrite this by using eq. (2. 5)

Tmax SIn (28 + @) + Cyco82 (0 — B) cosg
= Cicosp + 04y, Sing (2.15) -

Since egs. (2.14) and (2.15) are the same, the conditions of failure are thus similarly

described previously :

_ Tmax + Cz SinZ ()]
tan2p = Tmaxtang+Cyco8 2 @ (2.16)

3. A Consideration to Joint System

In the former section, conditions of failure are introduced for weakness planes. Now
joint planes including the coefficient of joint shall be considered here, In this case, we
can use eq. (2.3)

7] =2 C + o tang lﬂ
The same type of relationship may be T >
applied to a plane of weakness, In this -ﬁw
case, the joint would develop resistance M
against shear force in the term of :
75 = ¢ tan g; 3. 1D Fig.2 Model Joint Surface
in which, z; ; joint friction
¢; ; angle of joint friction
In the case of Fig. 2, roughness of joint influences the shear resistance under the
condition ¢; < B, then the eq. (3. 1) becomes :
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ty=octan (B + ¢ (3. 2D 7
Thus the strength influenced by joint B
can be drawn in Fig, 3. As shown in
Fig. 2, most of the joint is not
continuous, thus it is assumed that the

coefficient of joint “k” which is the Al=Z0;
cohesion

D =c+ dang;

C
= otan(B+ @)

=c 8 7= otan g
area, 3

“k” usually takes 0.3 to 0.7, then the 0= >
eq. (2.19) becomes : Fig. 3 Jointing mass strength
7y=keo-tan (B + ¢)) (3. 3
Owing to this joint friction, total

ratio of area of open joint and total

OD : shear occurs along the joint, having inclination
B to the shear force direction

shear strength will be much higher, OC : the force coincides with the joint direction (8=0)

Therefore, it may be written in the AB : the displacement occurs as a result of the mono-
litic block shearing.

form of

Ss=Co+ (1 —k)o-tanp, + k-0 tan (B+y¢;) 3.5
If the joint plane is wet, pore water pressure (u) would take place, thus affecting
the total strength is as follows :
S, = Cp + (1—=Kk) (¢6—u) tang, + k (¢—u) tan (B+¢;) (3.5

4. An Example of a Laboratory Test0, @

As a method of expression of weakness or discontinuities of rocky material in the labo-
ratory test, an experimental study is carried out to investigate the uniaxial compressive
strength and the mechanism of fracture of

x

cylindrical specimens (Fig.4) with an inclined Em o | 0¢=0° 15° 30°, 45°, 60°

layer made by material of lower strength, A h=10cm

part of the results obtained from the laboratory d=5cm

test is shown below, Ea/Ei=3

(Materials] (Young’s Modulus ratio)
Main part : plaster + HO (1 : 0.6 in weight

t : thickness of the layer
(em)

Fig. 4 Laboratory test specimen

ratio)
Layer part : plaster+ diatomaceous earth+H,0
(1:0.1: 1 in weight ratio)
4—1. Mechanism of Fracture

Through the experiments, it was observed that the mechanism of fracture was divided
into three cases as follows :
1D 6 = 0° 15° 30°
In this case, the first slip fracture appears in the layer part and the fracture of the
main part arises when the slip line of the layer part reaches its boundary.
2) 6 = 45°
The slip fracture of the layer part yields to the fracture of the total body.
3) 6 = 60°
The slip fracture appears at the boundary of two. parts, Skeches of mechanism of
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fracture are shown in Fig, 5.
4—72. Theories

As a result of additional triaxial test,
Mohr’s failure envelope reached to r = 7,
(const), i.e., the following assumptions -

. 6=0"° 6 =30° 6 =45°
may be based on the theory of maximum
Fig. 5 Skeches of specimens at failure
shear stress.

@ If it is assumed that the failure occurs when r=z, at the angle of inclined layer
(Fig. 6), and also assume the axial stress is ¢;, the shear stress acting on a plane
inclined 6 is thus:

1

= g, sin 20 : “. D
= = 0p | 4. D
then, "6, = gp/sin2 6 “. 3

® Assume the restriction force between top and bottom of the parting layer is to take

place (Fig. 6). Besides ¢, it is assumed that the principal stress ¢, = g; arises to the
-layer part thus :

& = —E1:~D— (o1 — 2vp a2) 4. 9

& = TL— (6, — vpo, — vp 61) (4. (9]

in which, ¢, & : strain with respect to ¢, g, in the layer part.
Ep, vp: Young’s Modulus and Poisson’s ratio of the layer part respectively.
&, is assumed equal to ¢ which is the strain of main part in the vicinity of contact
plane, We can measure g, &’ at the laboratory, so the relation of principal stress is
thus calculated to be :

o, (kg/cm)

60 SPummil s e —

—> 8

Fig. 6 Mohr's Circles _ Fig. 7 Theory and Experimental results
_ _ a+tuvp _ & :

0, = keoy (0<k.—————————] iy <1, a P ) (4. 6).
01=0Y=——10TDk’>UD 4.7

© Assume large cracks lie on the contact plane of two parts, based on Griffith’s theory,
If tensile stress (g;) acting on cracks reaches uniaixal tensile strength of the contact
plane, so under uniaxial stress state,
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-4 0, —2a.
o= ] cos ( 1 —cosf)
2 ‘/_ (1+cos28) — (1+cos26)
2
then, 0 =60°—> g1 = —8a, 0 =45°—> 0y =—9.740..

Fig.7 shows above results,
Description in Fig, 7 :
gc : compressive trength

gy : stress at yield point

K(6) (kg/em="2)

y& T IOOT

b

/ﬁ \\#

2001 :

0.5 1.0 3.0
cos26

Fig. 8 Failure State
In which,
4—3. The case of 6 = (° to 30°
As shown in Fig. 8,

closely related with L,
@ Relation of L and o¢

Fig. 9 Variation of Function of angle

gp : compressive strength of main part
material
oo : compressive strength of layer part
matarial
Tloo-o'c (lfg/cm’) 0 6=0° , m=0.54
{t 6=15 , m=0.57
0 6=30" , m=0.60
o
X o
50 % [
%o ® °
x ¥ °
% ,:
20 L L 1
0.5 1.0 5.0

Fig.10 gc-L Relations

I, and ][] show the failure tendencies of model specimens,

the specimen with 6 = (0° to 30° almost shows a = 45°, so oc¢ is

L 4t
sin (—Z« - 0) (4t is t at failure) 4. 9
Fig.9 shows the relation o¢c and L, and o'c (kg/sz)

from this figure, experimental equation T 70k
can be deduced as : GP

oc = K(6) L-m } 60 |~

(m average = 0.57) (4.10) —o— Experimental
in which K (6) is a function of angle and 50} --0- - Theory

it varies with inclined angle.

® Relation of 4 and o¢

For solving the function of K (6),

relation cos20 and K ()= o¢c L™ drawn in
Fig. 10, which gives :
K (0) = K, (cos26) "
(Ko = 40.4, n=0.58) } (4.11)
These results are summerized in the
following eqaution :

40

30

20

10

— 60

Fig. 11 Conpressive Strength
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K
gc = '[;6-5’7*(&3;'2—0)"6.58— (412
Physically, this becomes :
K,
oc = T
¢ v Lecos 8 4.13)
Substitution of already mentioned L in this eqaution, thus :
K
o¢c =
T
‘/An' + COS (—4— -8)
K=K/v72) (4.14)

This result is shown in Fig., 11.
5, Conclusions

The problem of influence of joints is quite complex. In analizing this theoritically,
various kinds of assumptions can be made. Since this is the case, we often have to
consider additional phenomena, Rock mass has several different structure types, and
generalization is impossible, Therefore, new models must be fabricated in order to
facilitate analytical assumptions of the derivative conclusions.

More comparisons will thus be necessary for value analysis in respect to laboratory

testing for criterion for failure.
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