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A Note on the Numerical Method of

Cascade Flow
Jun Ito

(Received on 30 October, 1972)

1. Introduction

In singularity method, as seen in ref. (1], (2] and [3] ,the calculation
of the vorticity distribution (i. e. pressure and velocity distribution) of a blade
in a cascade have the following procedures.

(I) To derive integral equations as basic relations in flow field, ()"
to express the unknown functions in appropriate forms of trigonometric series,
() to substitute the series into the integral equations and to numerically
calculate the integrals which are the coefficients of simultaneous linear equat-
ions into which the integral equations are transformed, (I¥) to solve this
linear equations that results from the control point (pivotal point) processing
and (V) to substitute this solution into the series in order to detemine the
vorticity distributions.

From these items we can understand that such calculations are fairly
troublesome. Circumstanced as these are, a concise method not related to the
process (I), (lI) and (V) is proposed in this report.

2. Basic Equations
2.1 Induced Velocity

Consider the cascade whose chord
length, solidity, attack angle (concern-
ingthe vecfor mean velocity) and sta-
gger angle are denoted by ¢, c/t, @ and
B respectively (Fig: 1). On representing
the attack angle and blade camber by
the vorticity 7 (x), the induced velocity

potential ¢ (x, y) is given by 3 :
c
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where 7 (x) is distributed on a chord

line instead of a camber line owing to

mathematical difficulties. Partial dif- Fig.
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ferentiation (8/dx, 9/0y) and limiting process (y —0) of eq. (1) enable the x and
y-component of induced velocity to express as

.
— _ 1 NS ntecosB '
u o fg(x )n:z,—oo ((x—x) — ntesinB)2 + (—ntecosp)? dx @

v

c .
_ 1 ; x—x—nt-smﬂ . X'
_rr—.[r(x)n_z_oo {(x—x) — ntesin B} + (- nt°cos}9)2 @

in which the summation of mfmfte series can be readily deformed from mathe-

matical tables and by s1mple reductions as follows :

oo

5 x — % — ntesinB :
n=-o (x—2x'—nte+sin Bf)® + (—ntecosp)?

. cos B * sinh (21tx—txlcos.3> + sin'8 e sin (2n’x—tx,sinﬁ)

= — — @
cosh (ZW%COSB) — cos (2#" tx sinﬁ)
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5 —nteco B
n=-w (x—x'—ntesinf)?* + (—nt - cosp)*

sin B ¢ sinh (2 X% ¢os 13) — cos B¢ sin (2ﬂx_f:q’ sin 13)
r t t ©)
=t

cosh <27t ":x' cos 19) — cos (2zx—;3‘:sin .B)

When the right-hand sides of @) and (8) are written by = R(x, x") /t and
7 I(x, x') /t, the final forms of induced velocity become

(o} (o}
0 = —721t—j:(x') (s, #) dx' v = —Zl—tfzcxo RG v, @) 0

2. 2 Integral Equation, Simultaneous Linear Equations

From the tangential flow condition we can get the next equation

dyr (x) _ Uesina + v
T dx Uecosa + u »

®

where. yr (x) and U are blade form and vector mean velocity. By substitution
of 6) and (7 into (8) we obtain the following singular integral equation ;

dys _ _ 1
—dr {cosa 2tU Ir(x)I(x,x)dx } sina STl
- c
X Ir(x.') R(x, x') dx’ 9@
0

To solve the above basic equation the integrals on the both sides are expressed
in finite series as follows by using the trapezmdal rule.

fr(x') ICx, 2) de’ = 1Gs §) * 7 (xi) )

X
2’[U j=14ntU

e jr(x’) RO ) dr' = 3 8C RGL D 1 () W
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Here the notation a has the value 1 for j=1 and 2 for j =2, 3, -, n. And xj
which denotes the end points of the subinterval of integration is defined by c
(=1 /n, where n is the number of subintervals (; The interval o £ x = ¢
is subdivided into n equal parts of length c¢/n). Eq @0 and ) satisfy the con-
dition (called Kutta-Joukowsky hypothesis) that assures smooth flow at trailing
edge. Functions I (i, j) aud R, j) are defined by

1G, j) = -sin Besinh {f(i, )+cosPB} —cosPesin {(f(i, D-sinf} gy
cosh {f (4, j)*cosB} — cos {f (4, 7) *sin B}

o cos B+ sinh {f(4, j)*cosB} + sinfe sin {f (i, j)sinf}
RG, 7 = "5 cosh {f (&, ;D *cosB} — cos {f (i, 7) * sin B} “

in which

£, P %C {(2G-5 +1}) . 4

From the relations (9) te 49, we can get a system of linear equations as final
form for determining the vorticity distributions and can rewrite in matrix form

as follows
Aijrj = Bi s
where matrix Aij, row vector rj and column vector Bi are given by
oo = -_a_(.:.,_. . . _ ' . . .
Aij Aot (RG, ) — 9/ DI ) @6
ri =15 @
Bi = sina — y/(xi) *cosa ' a8

respectively, here xi (called control point) is the midpoint of the subinterval
and defined as c(:—0.5)/n where i is the positive integer (1, 2, **, n).
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2.3 Number of Subintervals, Position of Control Points, Trapezoidal Rule
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In our numerical calculus the relation between the number of subintervals
of integration n and the accuracy is important. Fig. (2) indicates the effect of
n on 7 (x) in the case of isolated flat plate,.comparing with the analytical sol-
ution (4] of integral equation. Distribution of er in Fig. 3 is the mean values

(from leading edge to trailing edge for 4 to 10 points) of relative error in the

same condition as Fig. 2. From these figures it may be concluded the incre-

asing of the number of subintervals assures the better accuracy.

Next we should refer to the position of control points. Three quarter chord
theorem proposed by Schlichting (1] is not valid in our treatment from Fig.4
and Fig. 5 in which a dotted line is the result of a 3/4- chord theorem and a
dash dotted line a mid-chord approach. Especially in the case of parabolic
blade whose camber ratio is 0.05 the quite unexpected results have been obta-
ined (see Fig. 5). Therefore the positions of control points are taken in mid-

point of each subinterval and gave the satisfactory results.
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Fig. 4~ : Fig. 5
In the end of this section, the var : ‘ T =
. . . . e | g
-ious rules of numerical integration are U I/' ' Weddle’s rule
. . 0.6 — — Simpsor’
considered. From Fig. 6 we determ- ’/ \— Simpson’s 2nd rule
. . ) \—— Si ’s 1st rul
ined to adopt the trapezoidal rule (5], . \ / i Simpson’s Ist rule
. S —r idal - rule
because for the same number of n this W T repezolcalriut
\ \ &
rule gave the best results. 3 \1' \ A
04— \\ noA Y I
\ \/ \ \
3. Numerical Examples \;,‘ \\\ \ // \\
0.3)— 1 N h \
3.1 Isolated Blade ' N '\ ! \
3 / \
In this case the induced velocities 0.2+ t=o0 R \—
, __" \
are usually small (6] , so the equa- y—g \ \;\\\
. a= V N \‘
tion (9) becomes R T N
C . S,
dys 1 I 7(x) 4. p N
S e - Mgy (9 N
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Fig: 6

The expansion for the integral on the
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right-hand side is
c
1) gy = 3 acr(x)
fo a— T Zi2G=p + 1 @
so that @9 can be expressed as
A'ij 7'i= B

@)
in which A'ij=a/ (22U {2 G—j) +1) , 'j=7(xi) and B'i=a — dy, (xi) /dx.

Fig. 2 to 5 shown in previous chapter are due to these equations. The va-

lues of 7 (x) of isolated flapped plate are shown in Fig.7 in which the dotted
line is in 8’ = 0.

Note ; From this figure to Fig. 11 all the calculations are executed for 10 sub-
intervals. '

3.2 Flat Plate Cascade

The derivative of ys(x) vanishes, and therefore

Aij = -3¢ _R(i, ) and Bi = sina , 2]
7= gngRG D
T T ] % T
Usina i\ +/1=1.0
¢ v 4.0fH\ = -
) = t/l =0.5
a/( ﬁ g ‘\ \ =
. VY B=0
a= 3.0t —
=4 \ \| -——=— Schlichting
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Fig. 7 Fig. 8

Fig. 8 shows the comparison of this case with Schlichting’'s theory. Good agree-
ment can be seen. For various t/c and 8, y(x) /U« are given in Fig. 9 and 10.

3.3 Cascade of Parabolic Blade

Fig. 11 shows the effects of linearization of tangential flow equation (8) on

7 (x) for parabolic blade cascade. Linearized integral eauation

c
U —_ __1_ ~ ’ ' ’
y/(x) = «a 2tU-[:(x> R(x, z') dx @
is reduced to simultaneous linear equations with
.. ac .. . _ _ a4 I _ o XL
Aij intU _R(z. 7) and Bt a 4 o (1 2 c’) @

in the same way in chap. 2.
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Fig. 9 Fig. 10
4. Conclusions
A numerical method based on the tra- IJJ'
pezoidal rule of integration is developed l
for determination of vorticity distribution h F=0.05
of a blade in a cascade ( (7] and (8] ). s \ B=30°
For any form of blade this method is vevy ‘\\ #/1=1.0
easy to deal with and is specially powerful \ |
for the flapped blade. \\ i
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