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A Note on the Numerical Method of 
Cascade Flow 

Jun ITO 

CReceived on 30 October， 1972) 

1. Introduction 

ln singularity method， as seen in ref. [1J ， [2J and [3J ，the calculation 

of the vorticity distri bution (i. e. pressure and velocity distri bution) of a blade 

in a cascade have the following procedures. 

C 1) To derive integral equations as basic relations in flow field， cn) 
to express the unknown functions in appropriate forms of trigonometric series， 

(目) to substitute the series into the integral equations and to numerically 

calculate the integrals which are the coefficients of simultaneous linear equat-

ions into which the integral equations are transformed， CN) to solve this 

linear equations that results from the control point Cpivotal point) pI'ocessing 

and C V) to substitute this solution into the series in order to detemine the 

vorticity distri butions. 

From these items we can understand that such calculations are fairly 

troublesome. Circumstanced as these are， a concise method not related to the 

process C n)， C目) and C V) is proposed in this report. 

2. Basic Equations 

2. 1 lnduced Velocity 

Consider the cascade whose chord 

length， solidity， a ttack angle Cconcern-

ingthe vecfor mean velocity) and sta-

gger angle are denoted by c， c/t，αand 

s respectively CFig. 1). On representing 

the attack angle and blade camber by 

the vorticity r Cx)， the induced velocity 

potential CP Cx， y) is given by 

c __ 

少 Cx，y) =一去lf'〉n三

arctan (式よtぷ?と，)dx'ω 

where r Cx) is distributed on a chord 

line instead of a ca m ber line owing to 

mathematical difficulties. Partial dif-
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f eren tia tion (o/む .ojoy) and limiting process (y→0) of eq.ωena ble the x and 

y-component of induced velocity to express as 

一上{;ω2---J295L一一一一dx'
J;n=ー∞{(x-x') - nt. sin s)2 + (-nt・coss)2 

ーC「∞ z-z'-nt・sins 一一一 Ir (x') 2 
J; n=一回 { (x-x') - nt. sin s)2 + (-nt・coss)2 
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(2) u = 

明

in which the summation of infinfte series can be readily deformed from mathe-

matical tables and by simple reductions as follows: 

v = 

15 zーイ-nt・sins 
niー∞ (x-x'-nt.sin sア-+(-nt. COSs)2 

∞ss・sinh(2円五coss) + sin;s・山 (2πヰ丸刈
ω 

cosh (2πヰ.i_coss)一cos(2π与.i_sins) 

π 

t 

手 -nt・cos 
n:ー∞ (x-x'-nt・sins)2+ (-nt・COSs)2 

sin s • sinh (2πヰ ~cosß)
(5) 

- coss・sin(2π王子，sin s) 

∞sh (2π与笠'cosp)一cos(2 7r x~九in

π 

= t 

When the right-hand sides of ωand (め arewritten by πR(x.ど)/t and 

πI(x. x') /t. the final forms of induced velocity become 
c _C 

u =一一~;:-r r (x') 1 (x. x') dx' v =一」一 Ir (x') R (x. x勺dx'2t J: ，，-/ -，-----/ -- 2t J: (6)， (7) 

Integral Equa tion. Sim ultaneous Linear Equa tions 2. 2 

From the tangential flow condition we can get the next equation 

where. yr (x) and U are blade form and vector mean velocity. By substitution 

of (6) and (7) into (8) we obtain the following singular integral equation ; 

~ ~cosα ー -"L'Tr九')1仇 x')dx' } = sinα ー 1dx l--- 2 tU J: ，--/ - ，- - ..， --- J ---- 2 tU 

×J;ωR (x， x')む'

To solve the above basic equation the integrals on the both sides are expressed 

in finite series as follows by using the trapezoidal rule. 
C ，，- n __ 

一一一 I r(x') 1 (x. x) dx' = 2 A!.~-T 1 (i. j) . r(xj) 2tU Joj=24IltU  

C 

ーよTTI r (x') R (x. x') dx' = 
2tU J。

(8) 
_ U. sin α+  v 

U・cosα+u • 
qむ一生〕一

dx 

(9) 
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Here the n<Jtation a has the value 1 for j= 1 and 2 for j =2. 3.…. n. And xj 

which denotes the end points of the subinterval of integration is defined by c 

Cj -1) / n. where n is the num ber of subintervals C; The interval 0孟 Z 話 C

is subdivided into n equal parts of length c/n). Eq 0.0) and ~l) satisfy the con-

dition Ccalled Kutta-Joukowsky hypothesis) tha t assures smooth f10w a t trai1ing 

edge. Functions 1 Cムj)a ud R Ci. j) are defined by 

1 Ci. j) = __sin_~ ・ sinh {f Ci. j)・coss} ー coss・sin{f Ci. j)・sins} 
J 一ー ゴ示日f(i--:)戸高ssIコ可証-{f Ci~J) ・ sin s} 

R(t，j〉= cos ksinh{f(t ， j1 ・哩ßl_土塑 ~_sill_{fjj ._j)三sig_sl_
J/ cosh {f Ci. j)・c.'ss} 一 CI)S {f Ci. j)・sins} 

in which 

fCi.j)= 竺{2 Ci -j) + 1} . 
m; 

(12) 

(13) 

(14) 

From the rela ti()ns (9) tc'帥.we can get a system of linear equations as final 

form for determining the vorticity distributions and can rewrite in matrix form 

as follows 

Aij rj = Bi 。。
where matrix Aij. row vector rj and column vector Bi are given by 

Aij = 一一色f，..，.. {R (i. j) -y/ Cxi) 1 Ci. j)} 
4ntU 

(16) 

げ=r Cxj) 伺

Bi = sin α- y/Cxi)・cosα 締

respectively. here xi (called control point) is the midpoint of the subinterval 

and defined as cCi-O.5)/n where i is the positive integer (1， 2.…. n). 

2. 3 

Fig. 2 
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In our numerica1 calcu1us the re1ation between the number of subinterva1s 

of integration n and the accuracy is important. Fig. (幼 indicates the effect of 

n on r (め inthe case of iso1ated flat p1ate" comparing with the ana1ytica1 sol-

ution [4] of integra1 equation. Distribution of er in Fig. 3 is the mean va1ues 

(from 1eading edge to trailing edge for 4 to 10 points) of re1ative error in the 

same condition as Fig. 2. From these figures it may be concluded the incre-

asing of the num ber of subintervals assures the better accuracy. 

Next we shou1d refer to the position of control points. Three quarter chord 

theorem proposed by Schlichting [1 J is not valid in our treatment from Fig.4 

and Fig. 5 in which a dotted line is the result of a 3/4-chord theorem and a 

dash dotted line a mid-chord approach. Especially in the case of parabolic 

blade whose camber ratio is 0.05 the quite unexpected results have been obta-

ined (see Fig. 5). Therefore the positions of contro1 p'oints are taken in mid-

point of each subinterval and gave the satisfactory results. 

Fig. 4 

In the end of this s巴ction，the var 

-ious rules of numerical integration are 

considered. From Fig. 6 we determ-

ined to adopt the trapezoida1 ru1e [ラJ，
because for the same number of n this 

ru1e ga ve the best resu1 ts. 

3. Numerical E玄amples

3. 1 Isolated B1ade 

In this case the induced velocities 

are usually small (6 J ， so the equa-

ヱ
U 

tion (的 becomes 0.1 

J竺 =α-ifct〈叫 dx'・(19)
dx 2πUJ x-x' 

The expansion for the integra1 on the 

IIs和信年2月
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right-hand siae is 

JC叫 dz'=23M位
ox-z j=12(tーj)+ 1・ 側

so tha t (19) can be expressed. as 

A'ij r'i = B'i (21) 

in which A'ij = a/ (2πU (2 (iーj)+1] ，r'j=r(xi) and B'i=α-dYJ(xi) /dx. 

Fig. 2 to 5 shown in previous chapter are due to these equations. The va-

lues of r (x) of isolated f1apped plate are shown in Fig. 7 in which the dotted 

line is in s' = O. 

Note ; From this figure to Fig. 11 cill the calculations are executed for 10 sub-

intervals. 

3. 2 Fla t Pla te Cascade 

The derivative of YJ (x) vanishes， and therefore 

Aij = 

0.6 

0.4 

0.2 

。

一旦EF-R (i， 1) 
4ntU 

and Bi = sin α 

、¥当
Fig. 7 

1.0 

。
Fig. 

伺

Schlichting 

8 

Fig. 8 shows the comparison of this case with Schlichting's theory. Good agree-

ment can be seen. For various t/c and s， r (x) /Uαare given in Fig. 9 and 10. 

3. 3 Cascade of Para bolic Blade 

Fig. 11 shows the effects of linearization of tangential f10w 

r(x) for parabolic blade cascade. Linearized integral eauation 
C 

y/(x) α-n¥.;: r r (x') R (x， x') dx' 
2tU JO 

is reduced to simultaneous linear equations with 

j= 型 R(i， j) and Bi =α-41-(l-21jj 4ntU ~-V' J /  ---- ._- c' ，- -c' / 

in the same way in chap. 2. 

equation 制 on

帥

例
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Fig. 9 

4. Conclusions 

A numerical method based on the tra-

pezoidal rule of integration is developed 

for determination of vorticity distribution 

of a blade in a cascade ( [7J and (8] ). 

For any form of blade this method is vevy 

easy to deal with and is specially powerful 

for the flapped blade. 
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