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On the Relations between the Solutions
of the Two Differential Equations,
y = By and w = 2Bw |

Miki Kupo

(Received on 20 Octover 1971)

Let us consider a system of linear differential equations of the first order

An =k>=§1 2tk Ci=1,2,,n) )
or, if x = col (%15 Xg» == , xo) and A() = (ay(t), i,i=1,2,--+-,n), the matrix
equation
x'= A(x (x’ = dltx) &)
where aix(t) (i,k=1,2,-- ,n) are real valued functions of a real variable t and
piecewise continuous for 0 = t < .
Let us introduce new functions yi» yaz» oo » yn in place of the unknown func-

tions by means of the transformation

n

Xi = k)-:-:l hix(t)yk G=1,2,- ,n)
that is

x = Hy (©))
where H(t) = (hy(t), i,j=1,2,- ,n) is a Lyapunov matrix.

If Lyapunov transformation (3) carries the system of equations (2) into the

system

dyi _ 5" P = 1,2,

at E:___lblk(t)yk (i=1,2, ,n)
that is

y' = By> @

the null solution of which is stable, asymptotically stable or unstable in the sence
of Lyapunov, then the null solution xi = 0 of the initial system (1) possesses the
same property.

Therefore the consideration of the stability, asymptotic stability or instability of
of (2) is equivalent to that of (4 .

The properties of Lyapunov transformations and Lyapunov matrices may be
found in (2] .

Burton (1) has shown that (2) can be mapped into a system (4) such that all
solutions of a system

w' = 2Bw ®
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can be found, and established that, special conditions, the solutions of the two
systems, (4) and (5), have stability properties which are essentially the same.
Now we write the matrix A as a sum of piecewise continous matrices

A=A+ A Q)
so that both

h' = 2A:h €]
and

7z = 2A.z ®

can be integrated for principal solution matrices H and Z respectively.

Theorem (Burton) : For H defined by (7) , the transformation (3) maps (2)
into (4) and
z = Hw ©]
maps (8) into (5) » where B = H-! (A — H'H-1) H. Therefore, if H and Z are
known, then W = H-!Z is known. '
Proof of this theorem is in (1] .

Now we are interested in the relations between the solutions of (4) and (5) .
Theorem @ If there exists a matrix M satisfying that W = MM? and that
M'M" is symmetric, where T denotes the transpose, then Y = M.
Proof. If M'M" is symmetric, then (M'MT)T = M'M?’.
Since (M'MN)T = M(M™)’, we have
M'MT = M(MTYY . ¢(0)
By (10) , we have
W = 2MM? = 2M (M~IM)M? = 2 M'M-L(MM?) = 2M'M-1W.
And we have
M'M-! =B or M = BM.
Thus we have Y = M. Q. E. D

Burton has shown that W =YY" if W and B are symmetric from V' = 0 setting
V = Y"W-lY.
We have the following result with respect to the assumption of the avove the-
orem.

Remark @ The necessary and sufficient condition in order that M'M? is sym-
metric is that M'M~! is symmetric.

Proof. we know that MM" issymmetric by (MM™)?® = (M™)? M* = MM". Therefore,
from M'M" = (M'M~D) (MM™), if M'M? is symmetric, then M'M-! is also symmetric,
and the inverse of this is also true.

Example . Let us consider

' — cot 2t —cosec 2t)
w 2Bw, where B (—cosec 2t cot 2t
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y' = By and w = 2Bw
If we put

_ [cost sin t)
M (cos t =sint/ ,

then we have

T = 0 —sin Zt)
MM = (L % %
and this is symmetric matrix.

And we can easily show that W = MM" satisfies W' =2Bw.

_(cost sint) . . . A
Therefore M = (cos t —sin t) is the solution of the equation Y = BY

Further, MMT = (clos o cols Zt) is symmetric.
41 = l {tant — cot t tant+cott). :
M-l = ———
and M'M 5 (tan t + cott tant — cott/) S also symmetric.
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