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ordinary differential equation
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1. Introduction

The purpose of this report is to discuss the application of a method in the numerical
solution of nonlinear parabolic partial differential equation for solving nonlinear ordi-
nary differential equation with split boundary conditions.

We shall be concerned with the boundary value problem
D v+ f&xu,u)=0, 0<x<1, u(0)=u(1)=0,
and corresponding parabolic partial differential equation
(1.2) uxz+ f(x,uue) =we, 0<x<1, O0<t=T,

u@t)=ull,t)=0, 0<t=T, u(x,0) specified 0<x<1.

As a difference analogue of (1.2), we consider the backward difference equation
(1.3) Lwin + £ (xi, Win-1, 0xWin-1) = Pt Win
where h = (N + 1)-!, k=TM-13 xi=1ih, ta=nk, win=w (xi, tn),

Lxwin = h~2(Wit1n — 2 Win + Wi-1n)
0:wimn = (2h)~1(Witln — Wi-1n)
Pewin = k"1 (win —Win-1).
In section 3 convergence of the solution of (1.3) to that of (1.2) will be established.

This method of solving partial differential equation is one in which each time step
of an unsteady-state problem may be regarded as a stage of the iteration of solving
nonlinear ordinary differential equation, with the initial conditions being regarded
as the starting values, or, first guess. Thus the time increment k of the unsteady-
state problem may be regarded as the iterative parameter of the steady-state problem.

The only consideration of interest in the solution of a nonlinear ordinary differential
equation is that convergence to the correct steady-state solution be attained in the
least number of iterations. Generaly, the iteration parameter can be increased in size
as the solution is approached. Furthermore, since the intermediate values are no inter-
est, the initial iteration parameter can be larger than the initial time step which is
used in an unsteady-state problem. This point will be discussed in section 4.

2. Preliminaries
Let R denote the rectangular region defined by the inequalities R: 0<x<1, 0<t=T3
and R denote the closure of R. The boundary of R is composed of the three segments

B, (0=x=1, t=0), B:(x=0,0<t=T), B, (x=1,0<t=T). Let Rux be the rectangular
lattice covering R determined by the intersections of the coordinate lines x =ih,
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(i=0, 1,~+, N+ 1), t=nk(n=0, 1,+,M). The boundary Bux of Rix is union of the
three sets Bhx=BiNRnk (i=0,1,2). The interior of the lattice is the set Rhk=Rhk— Bhk.
Furthermore, let wa represent the column vector (W1n,Wan,Wrn), and we introduce
norms
Iwallt=h = N;|wul and llwal} = hZ Y fwialt.
Lemma 1. Let f and g be nonnegative functions defined on the mtegers 1, 2., M. Let
g be nondecreasing. If C is a constant and
frSgn+ CEXPIL A (R<0),
then
SnS gnexp(Chn).
Lemma 2. Let v be a solution of the difference equation
Q.1) prv=4%v+ G in Rak.
If v vanishes on Bk, then
7204l <2 ZrllGl1*%
for all sufficiently small k.
Lemma 3. Let v be any function defined on Rw which vanishes on Bux. Then

1
vml = 2 m a x”VzUn“l

x|
N+1 1<nsM

M
For the proof of Lemmas 1, 2, 3 see [1] .
Remark. Although the expression in Lemma 2 is slightly different from M.Lees,

the proof is essentialy the same with his proof.

lA||/\§
n/\lIA&

3. Convergence of solution of difference equation

we shall approximate the solution of the nonlinear parabolic partial differential
equation
G uxx+ & us ux) —uws =0 . .
by solution of an associated backward difference equation. Let u (x, t) be a four
times boundedly differentiable function on R which satisfies (3.1)lin R. we assume
also that the function f(x, u, p) appearing in(3. 1) has at least first bounded
derivative with respect to u and p respectively. The solution u (x, t)is approximated
by the function w(x, t) defined on Rnk which agrees with u(x, t) on Buk and
satisfies in Rnk the backward difference equétion
(3.2) 4Pwin+ f (X5 Win-1» 0xWin—1) — Piwin = 0. .

The difference eqution (3.2) has a very important property that the system leads
to linear algebraic equations, and the matrix of the system is of the tridiagonal
type and can be handled quite easily by Thomas algorithm. 2

Theorem. Let the functions f and u satisfy the conditions stated above, then the solution
of the system (3.2) converges uniformly to the solution of (3.1) with an ervor that is 0(h?
+&).

Proof. It follows from our assumptions and the mean valué theorem that u satisfies
(3.1) with a local error 0(h® + k), that is
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(3.3) Axum + £ (1, win-1, dxuin-1) — dwum = 0 (h® + k).
To prove the theorem, it is necessary to derive a difference equation satlsfled by
the error z=u—w. Subtracting (3.2) from (3.3) leads the difference equation -
(3.4) Mz + fhzin—1 + £$0:2i0-1 — Pizin = 0 (h* + k).
Where the * indicates that the partial derivatives are evaluated at points  called
for by the mean value theorem. Set :
(3.5) Gin = f¥zin-1 + f¥82zia—1 + 0(h® + k).
Then (3.4) becomes
Ay Zin = P1zZin + Gin
which is the form (2.1). The function zin vanishes on Bhk. Hence the assumptmns
of Lemma 2 are satisfied and we may conclude the existence of a constant Q such
that
(3.6) IPxzall® SQk ZF1 IGH®.
It follows from (3.5) that
G. 1D G =Qo (W2 + k) +QullPxze—1lls*,
and using (3.6) and (3.7) leads to the inequality
(3.8) [I7xzal *SQQT (h? + k)* + QQu k TP I7xz:lls®.
Applying Lemma 1 to (3.8) yields for all sufficiently small k
(3.9) lzall:*=QQ0 T (h?® + k)?*exp (QQ: T).
It follows, finaly, from (3.9) and Lemma 3 that

(3.10) 0515aleum Wml—maxlmnls 2 QQo T (5~ 2 QQ: T) (h? + k).
0

Z=nsM
which is the desired result.

4. Iterative parameter

From (3.10) we shall take k = eh?, since it can be proved that this is the most
efficient choice.(3]
Let u and w be the solutions of (1.1), (1.3) respectively. Let
€in = Ui — Win
and
Zin = €in — €in+1 = Win+l — Win.
Then it follows from (3.2) that zw satisfies the equation
“.1D Ziein — (2 4+ ®) Zin + Zi+1n = —0zin—1 —h? (fizm-1 + £¥0xZin—-1)
where

~h_ 1
k P’
Note that this is the same with (3.4).
we shall write (4.1) in matrix notation
AZs = Bzn-1» OT» 2Za= A~!Bza-1»

where A =[1-2-01-]=Tx—oland B =[Bogr —o-npt -Gt ).
Then, when the spectral radius has small value the convergence to the steady-state
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solution is rapid.

Since Tyx= [ 1—-2 1] has characteristic values —4sin22(131—7:_1) (i=1,2,-,N) (4,

the matrix A has characteristic values —w—4sin2m§ﬁ_—1).And hence the charact-

eristic values of A~! are (—w—4sin’2(1il—ﬂ+l))“. Actual determination of the value

of spectral radius of A~'B is difficult, since the matrix B contains fu and fw with
respect to unknown function u and u’. :

5. Numerical examples
Example 1. u” +0.49 W)+ 1=0, u(@®=u(l)=0.
Since B has the form —oI + B¥, where B*¥*= [ 0.499hu’ 0 —0.4%hu’ ], ithe spectral

l

radius of A-'B is approximately 4 = o (@ + 4sin22(Tﬂ+1—))“, thus the convergence is

rapid when o is as small as possible.

Starting with initial guess u (x) =0.5x (1 = x), we obtain the approximate values
as shown in Table 1. We used h =0.1 and time increment k was increased by 10%
each time step. Steady-state was reached after iterations as shown in Table 2.

Table 1 Table 2
X approximate exact , number of 2
solution solution v iterations

0.1 0.04653 0.04657 2 21 0.8363
0.2 0.08224 0.08230 5 14 0.6714
0.3 0.10748 0.10757 10 10 0.5053
0.4 0.12253 0.12264 25 7 0.2901
0.5 .0.12753 0.12764 35 6 0.2259
0.6 0.12253 0.12264 55 5 0.1566
0.7 0.10748 0.10757 120 4 0.0785
0.8 0.08224 0.08230 700 3 0.0141
0.9 0.04653 0.04657 o 3 0.0000

Example 2. u”’—et=0, u(@® =u(l)=0.
Since the matrix A-'B has the form (Tyx —wI)-! [0 — +hZeu O-"], the spectral

radius has the smallest value when @ — h’¢ev=0. with h =0.01 and initial guess
u(x) =0, we have obtained the values shown in Table 3. The number of iterations
are shown in Table 4.
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Table 3 Table 4
épproximate exact ‘ number of
* solution solution f iterations
0.1 —0.041435 —0.041436 700 14
0.2 —0.073268 —0.073269 3500 6
0.3 —0.095799 —0.095800 7000 4
0.4 —0.109237 —0.109238 9000 3
0.5 —0.113703 —0.113704 10000 2
0.6 —0.109237 —0.109238 11000 3
0.7 —0.095799 —0.095800 | 12000 4
0.8 —0.073268 —0.073269 35000 5
0.9 —0.041435 —0.041436 = 6

These numerical experiments have Been performed on the NEAC 2200—500 at the
Tohoku University Computer Center.
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