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Application of Momentum Theorem to
Supercavitating Cascade Flow (1)

Jun Ito

(Received on 30 October, 1971)

Introduction

Cavitation occuring in hydraulic machineries makes noise, vibration, large loss in
performance and damage and destruction due to erosion. From this point of view the
study of supercavitating cascade flow is fundamentally essential for the purpose of
speeding up of hydraulic machineries, namely, " marine propellers, pumps and hydraulic
turbines,

The work in this field is that of Woods [1) who assumed the cusped cavity, Sedov
[ 2] who applied the re-entrant jet model to a flat plate cascade, Nishiyama (3] who
developed a cascade flow theory by acceleration potential concepts, Sutherland and
Cohen [ 4] on finite cavity cascade flow, Oba [ 5) who obtained a clear expression of
the drag-lift ratio, Murai and kinoe (6] who assumed the double-spiral model, Jakob-
sen [ 7] who used a method of the parametrization by Levi Civita, Cornell (8] on the
stall performance of cascades, Acosta [9) on a cascade of circular arc hydrofoils,
Grevich [10) who extended Sedov’s work and Nishiyama and the author ([11] who
proposed a singularity method for the supercavitating cascade flow. These two-dimens-
ional potential flow analyses are not so adequate for the real complicated flow in hydr-
aulic machineries, but are the first step towards such a difficult problem.

In this paper the equations for lift, drag and total pressure loss are derived from
the momentum theorem of Euler. A theory is developed for two-dimensional, steady,
incompressible, finite cavity flow past a straight cascade. Special cases of the equations
derived here coincide with those in reference [8],

Lift, Drag and Total Pressure Loss

In figure is shown the supercavitating cascade with stagger angle B, pitch s and
chord length c. The origin, x-axis and y-axis are assumed to be taken the leading edge
of foil, the oncoming entrance flow direction and the normal direction to it. An entrance
flow of fluid density p, relative velocity V, and angle $; (which is measured to the
normal to the cascade axis direction defined as tangential t-direction) advances with
static pressure P, and seperates from the foils of cascade at the leading edge, from
which a free streamline emanates, forms supercavity and extends to jet flow region, in
which the velocity, angle and static pressure are V,, f, and P, respectively, Pressure
in supercavity is P, which is usually considered as vapour pressure. The n-component
normal to the cascade axis and t-component of the rate of momentum change in a
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semi-infinite strip of width t, which extends along the streamline from infinitely far
upstream to cavity region, are equal to the n and t-component of the force due to fluid
pressure and the blade force acting on the fluid, i.e, -N and -T.
The fluid force acting on blade is follows,
N=s{(P1—P)(1—p) +p(Pi—Pc)}+ ps{Vifcos?f,— (1 — p) Vy'cosf,} (1)
T =ps{Vicosp, - sinf,— (1— ) Vy'cosp, - sinf,}, (2)
where sy is assumed to be the width along cascade axis of far-wake region in dissipat-
ive wake model of Joukowsky-Roshko-Eppler, From the definition of cavitation number
and equation of Bernoulli, we get

Pl—Pz= "%“ leza ( 3 )
2 .
P —Pc= %‘ eVy (—l-jzi“), (4)

where the quantity ¢ is cavitation number and 2 is jet velocity ratio V,/V,,
Thus

— A2
N= 5 oVit (255 s A=)+ 5 supVito+ psVicospi— ps(l—p)Vicosths,  (5)
The last term of this equation, by mass balance

psVicosp=ps(1—u)Vycosp,, (6)
can be expressed as

| oS lip Vi’cos?s;.
Therefore (5) is
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1 -2
N= -5 oVie () { (FF) Ammy+po+2costhy (2> | <)
Similarly (2) becomes
T= 5 oVic (-2 {2cosp; (sinfy— S0 ) (8)
When the coefficients of N and T are defined as
__ N
CN= _;_.pvlzc
Y S
CT: %pvlzcy
from (7) and (8)
s 1-2
Com (o) { () (1) +uo+2oostpy (2] (9)
Cr=2 (—-(S:— ) COS,B] ( Sinﬂl— Sl—nlﬁz_ ) . (10)
When the coefficients of lift L and drag D are given by
L
CL‘—‘ _2__ pvlzc
,__——_._‘D —
Co= - pVic,
the combination of C, and C, with Cy and Gr produces
CL=CT COS‘B—CN sinﬁ
Cp=Cr sinB+Cy cosp,
Consequently
CL= —z— [ 2 cosf « cosB, ( sinp;— —Slg—ﬁ’—)
— A2
—sing{ ( 12500 (1-w)+ wot2 costh ( A0 }] (11)

Cp= —(S:— [2 sinf - cosB, (sinf,— 5131_32_ )

1-2 2 K ]
+ cosp { 250 () tuovzeoss (- F ) ] 12)
In order to simplify the above equations and be able to compare them with the reference
(8] the equations (11) and (12) are, by simple calculation, led to

Cu= 5~ (2cos, [ sin (=B — -F-sin(f-p) }

—sing { (155 (1-p) +po | ) a3)
Co— - [2cospy { cos (=B = 3 cos (Br—5) ]
woosp [ (A5 (1w} ] a0

Let the control surface take between jet stream and down stream in a strip width
t, then the n-component of momentum equation is given by
psVicos?By— ps (1—p ) Vicos?fy=s (1—p) Py+ usPc—sP;, (15)
where suffix 3 means infinitely down stream quantities, From (3) and (4) the
right of (15) is
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s (P—Py) +4s) % oV (155 - pV,’o‘ 1
Therefore the static pressure drop can be written as
1 1 1-—-2
PimPi—pt {5 oVio = 5 oVi (=37 |
+pVg? cos?By—p (1—p ) Viicos?B,. (16)
The relation
Vs,
COSBZ=‘ —1— # V COSﬂ; (17)

which is derived from continuity of mass leads (16) to

2
P—Py=pVi cos'fs (=, ) — —-—pr,u (o— —17'{— ), (1%

while from the fact that the t—component of velocity is unchanged in the mixing proc-
ess and the mass balance (17) we obtain, after little reduction, total pressure diffence

2
Pry—Poy= ; pVé [ sin’B, { 1+ - CO_LI%T } -1

(1
) 1-22
+2cosﬁa(~ 1 )] pvlﬂ(o—- ) (19)
where Ppy—Pry= - %* pr - “%‘“ PV32+ P,—P;, (20)

The equation in square bracket of (19) becomes

costpy | 72|,

and consequently the total pressure loss is

1 2 _‘,‘12
Pn—Pn= 9 oVy? cos’By (_l./'-l—_,t;)z + - 2 oViu (o— B ), 21
since P45‘1=P1'2 .
where
P’1‘1= ;‘ leZ+Pl .
From (21) the total pressure loss coefficient defined as
Py =Py
Y= _% lez
. ? . 1-22
is  v= -—(—1%7)7 cos?i+u(o— - 22’ ), @y

where V;? cos?B,=Vy?cos’f;
is used,
Note ; (13) and (14) become simple a little as 8=4,.

3. Conclusions

The equations for lift, drag and total pressure loss are derived from Euler’s mom.
entum theorem under the assumptions which are two dimensional, steady, incompressible
in the whole flow field and further inviscid between oncoming and jet flow region.

In reference (8] it is concluded the theory is not adequate for low solidity
cascade with thick and large cambered foils, But in this paper there are no such restr.
ictions,

Let (13) compares with the equations derived in reference (8] whose express-

KEREFREERT 5



Application of Momentum Theorem to Supercavitating Cascade Flow 49

ion'is

Conm { cosﬁf»o }2(_:_)[5111,8( -—) +2 cosp, {Sin(ﬁn—ﬁ.)

cosf;

1 .

- —-sin(B-B)} ) (22)
where the above coefficient is refered to vector mean velocity and direction Ve, Be.
The difference between (13) and (22) is the additional term in (13),

That is

-~(S:-' sinf « 4 {(—1—;222 ) +o }

Total pressure loss in reference (8] is given in following expression
P,—T.,= —; V¢ Coszﬂsl ‘(l—fﬁr}z (23)

The last term of (21) does not appear in (23),

These are caused by the assumption that in reference (8] the flow seperates to
form large eddying wakes and within the wakes the static pressure is taken as the jet
stream pressure, Therefore if one could accept the cavity pressure as the jet stream
pressure, (13) and (21) weculd be reduced to (22) and (23). However in superc-
avitating flow these pressure values do not coincide with each other, The disagreement
in these equations are considerabl:, The qeuations (13), (14) and (21) will be
numerically estimated in the second report,

The author wishes to acknowlege Mr. H. Hiwatari for his help. For deriviation of
equations the author is indebted to Y, Ono, Student in Department of Mechanical
Engineering, Akita Technical College.
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