鋳物用金型の熱応力について (第1報)

―― 中空円筒の場合 ――

福

Ħ

浩

> Hiroshi FUKUDA (昭和46年10月30日受理)

これらの仮定と、加熱あるいは冷却の条件により温度 分布が時間とともに変化する場合でも、ある瞬間におけ る発生熱応力値はその時の温度分布によって決まり、そ れと同一の温度分布が定常的に存在する場合の熱応力値 と変らないと普通は考えられるから、本研究ではつぎの ような問題となる。

すなわち,座標軸を図—1のように選べば,内外半径 r=r₁,r=r₂,(r₁<r₂)の境界をもつ中空円筒において, その表面における温度がそれぞれ θ_1 , θ_2 である熱の流れ が定常的な場合の温度分布を求めることである。

この場合の温度分布 θの基礎式は,

境界条件は

(1), (2)式を満足する θ は

で求められる。

外力の作用しない無限に長い中空円筒に生じる熱応力 は次式で与えられる。

1. 緒 言

鋳造用の金型は鋳造行程中に急激な加熱と冷却がくり 返えされるため、不均一な温度分布による熱応力が発生 し、使用の回数が多くなるにつれて、ときには金型の破 壊の一因となり,鋳造製品に欠陥を生ずることにもなる。

したがって,実用されている種々の形状金型の形状設 計に際しては,与えられた条件のもとで誘起される熱応 力の大きさを充分考慮し評価しておく必要がある。

このため,機械部材や構造部材の熱応力に関する研究 は非常に多く,とくに数学的な取扱いの容易な軸対称無 限長中空円筒については研究の成果は著しい。

しかし、金型による鋳造部門における研究の多くは, 冶金学的な材質の面あるいは鋳造現場で使用上の問題点 に関するものは数多く見受けられるが,金型部材内の熱 応力に対する定量的な結果を得ている例は比較的少ない ようである。

ここでは、まず二、三の中空円筒金型について純アル ミニウムを溶解注湯することによって、型部材内に生ず る熱応力値を鋳込みの初期、すなわち本研究に於ては注 湯後15秒までの間を金型部材内の温度分布が時間ととも にきわめて急激に変化する非定常状態(熱衝撃)とみな し、それ以後の温度分布の経時変化については、比較的 ゆるやかとなるので、各瞬間における定常的な場合とし て解析を試み、比較検討したものである。

2. 実験の理論

本研究の結果を解析するにあたり,つぎの仮定をお く。

(1)物理定数は温度によらず一定である。

(2) 中空円筒は無限に長く、しかも温度分布は軸方向 ならびに円周方向には一様である。

(3) 外力は作用しない。

昭和47年1月

$$\frac{1-v}{E\beta} \mathbf{r}^{2}\sigma_{r} = \frac{\mathbf{r}^{2}-\mathbf{r}_{1}^{2}}{\mathbf{r}_{2}^{2}-\mathbf{r}_{1}^{2}} \int_{\mathbf{r}_{1}}^{\mathbf{r}^{2}} \theta \mathbf{r} d\mathbf{r} - \int_{\mathbf{r}_{1}}^{\mathbf{r}} \theta \mathbf{r} d\mathbf{r}$$

$$\frac{1-v}{E\beta} \mathbf{r}^{2}\sigma_{t} = \frac{\mathbf{r}^{2}+\mathbf{r}_{1}^{2}}{\mathbf{r}_{2}^{2}-\mathbf{r}_{1}^{2}} \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \theta \mathbf{r} d\mathbf{r} - \int_{\mathbf{r}_{1}}^{\mathbf{r}} \theta \mathbf{r} d\mathbf{r} - \mathbf{r}^{2}\theta$$
.....(4)
$$\frac{1-v}{E\beta} \mathbf{r}^{2}\sigma_{z} = \frac{2\mathbf{r}^{2}}{\mathbf{r}_{2}^{2}-\mathbf{r}_{1}^{2}} \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \theta \mathbf{r} d\mathbf{r} - \mathbf{r}^{2}\theta$$

いま,温度分布が(3)式で与えられるから(4)式に(3)式を 代入しrに関して積分計算を行なうと,半径方向,接線 方向および軸方向の熱応力は

$$\sigma_{\rm r} = \frac{{\rm E}\,\beta}{2(\,1-\upsilon)} \left\{ \frac{(\theta_2 {\rm r}_2^{\,2} - \theta_1 {\rm r}_1^{\,2}) - (\theta_2 - \theta_1) {\rm r}_1^{\,2} {\rm r}_2^{\,2}/{\rm r}^2}{{\rm r}_2^{\,2} - {\rm r}_1^{\,2}} - \theta \right\} - \theta \left\} \sigma_{\rm t} = \frac{{\rm E}\,\beta}{2(\,1-\upsilon)} \left\{ \frac{(\theta_2 {\rm r}_2^{\,2} - \theta_1 {\rm r}_1^{\,2}) - (\theta_2 - \theta_1) {\rm r}_1^{\,2} {\rm r}_2^{\,2}/{\rm r}^2}{{\rm r}_2^{\,2} - {\rm r}_1^{\,2}} - \frac{\theta_2 - \theta_1}{\log({\rm r}_2/{\rm r}_1)} - \theta \right\} ...(5)$$

σ₂は両端自由であるから,

 $\sigma_{\rm z} = \sigma_{\rm r} + \sigma_{\rm t}$

で得られる。

この場合の応力分布を図-2に示す。

発生熱応力の絶対値の最大は円筒内面における接線方向応力σ₁₁で,つぎに外面における接線方向応力σ₁₂である。

なお、半径方向応力の最大値 ormax は次式で示される

半径rに生ずる。

浩

 $r = r_{2} \sqrt{2 \log (r_2/r_1) / (r_2^2 / r_1^2 - 1)} \quad \dots \dots (6)$

本実験の注湯初期, すなわち注湯後15秒の間は時間と ともに温度分布がきわめて急激に変化する特殊な場合で 熱応力の計算に物体の質量効果, すなわち材料の慣性の 影響を考慮する必要がある。

この場合には,非定常熱応力または熱衝撃の問題とし て解く必要がある。

いま,厚さ h=r₂-r₁の金型が初温 θ_0 のとき時刻t= 0から内面が温度 θ_t の流体の熱伝達によって急加熱され る場合として,無次元熱応力 σ_t^* (実際の発生熱応力と 温度変化による自由膨張あるいは収縮を完全に拘束する とき発生すべき熱応力との比)と,無次元化時間t*およ びBiot 数 Bi (無次元化した熱伝達係数)を導入して相 異なる材料が相異なる熱伝達条件において生ずる熱応力 はBi と t*を一致させれば, σ_t^* が同一に表われると云 う非定常問題における相似則を利用することにする。

無次元熱応力 の* を

σ_i*=σ_{ts}(1 - v) / E_.3(θ_f - θ_o)……(7) 無次元化時間 t* を

とし、パラメータを Biot 数 Bi = $\alpha h / \lambda$ (9)

とすると, の*の経時変化は時間の経過とともに変化 し,ある小時間後に最大値をもった後に低下する。この 場合,最大熱応力は常に加熱側表面に発生する圧縮応力 である。

3. 実験の装置と方法

実験装置の概要を図-3に示した。

使用した金型は軟鋼製で,内径50mm,高さ200 mm一定 で,外径が60,70,80mmの3種類の中空円筒型である。

溶解金属としては, 99.5%の純アルミニウム地金を用いた。

これを黒鉛るつぼに入れ,自家製の電気炉で約750 ℃ まで加熱溶解し,図―4に示すようにセットしてストッ パーの操作によった金型へ注湯した。

秋田高専研究紀要第7号

28

注湯時間は5秒,注湯温度はほぼ720℃になるようにした。

金型系の温度測定には、図一3に示したように鋳型中 心(溶解金属),型の内面(注湯金属と金型との境界面) 型外面の3箇所を予め検定した0.6 mm直径のアルメル・ クロメル熱電対によって引き出し,前置増幅器を経て直 記式電磁オシログラフに記録させた。

なお, 前記の解析計算には

金型材の物性値として

 $E = 1.0 \times 10^{5} \text{ kg/cm}^{2} \qquad \beta = 1.1 \times 10^{-5} \text{ °C}^{-1}$ $v = 0.28 \quad , \qquad \lambda = 40 \text{ kcal/mh °C}$

溶解アルミニウムは

 $\gamma = 2.30 \text{g/cm}^3$, Cp=0.26kcal/kg°C $\lambda = 178 \text{ kcal/mh}^\circ\text{C}$

また,注湯時のものとして

Re=50000 , $\alpha = 3.45 \times 10^{4} \text{kcal/m}^{2} \text{h}^{\circ} \text{C}$ の値を用いて実験の結果を整理した。

4. 実験の結果と考察

図一5に鋳込み後の経過時間に対する溶融金属および 鋳型内外面の温度分布を示した。

この結果から鋳型厚さの小さいものほど型内外面の温 度の高いことがわかる。 これは,金型のもつ温度拡散率,熱容量などが原因と 考えられるが,本実験では同一材質金型を使用している ので,熱容量の相異によるものと考えられる。

このことは M.N.Srinivasan らの鋳鉄鋳型による研 究によっても明らかにされていることで,一般に

鋳型比 K=鋳型断面積/鋳物断面積

の増加とともに,型内面の最高温度が減少することが 知られている。

本実験とM.N. Srinivasan らの実験による型内面の最 高温度と鋳型比との関係を図一6に示した。

鋳型比の増大,すなわち鋳型厚さが増大するにつれ, 鋳型の熱容量が大となって溶解金属の熱が奪われる度合 が大きくなるものと理解される。

ここでは中空円筒鋳型を用い,内径が一定,すなわち 鋳物断面積は一定で,鋳型の断面積は鋳型厚さに対応す る。

一方, 鋳型のもつ熱容量は(比熱)×(密度)×(体積) である。したがって熱容量比は体積比となる。

しかるに,鋳型の高さが一定なので熱容量比は鋳型厚 さの比に対応し,結局は鋳型比に対応することになる。

鋳型内部に発生する熱応力値は前述の理論解析の諸式 から明らかなように,一義的に鋳型内外面の温度差によ って決まる。

図一7と8に鋳型内外面温度差と鋳込み後の経過時間 の関係を示した。

これらの示す結果から,鋳込み初期における温度差は 鋳型厚さの小さいものほど急激に増大し,それぞれ最大 値を示したのち一様に減少するが,鋳込み後ある小時間 を経過してから鋳型厚さに対応する温度差値は逆転して いる。

このことから,鋳込み直後にはいわゆる熱衝撃の様相 が現われ,鋳型厚さの小さいものほど初期発生熱応力が 大きく,実際上欠損を生ずる度合の多いと云う一般的な 事実と一致する。

また,鋳型厚さの大きいものは,初期の温度差値の増 加率は少ないが,最大値をこえてからの減少率はかえっ て少なくなっている。

以上の結果より,鋳型部内に発生する熱応力の経時変 化が比較的ゆるやかな定常熱応力をそれぞれ横軸に鋳型 厚さ,縦軸に引張(+),圧縮(-)の応力,パラメータと して鋳込み後の時刻をとって示すと図―9,10および11 浩 のようになる。

これらの示す結果から、まず鋳型部内に生ずる接線方 向および軸方向の熱応力 σt, σz は、内外表面でそれぞ れ等しく、内面側で圧縮、外面側で引張の応力で、途中 は上に凸の曲線となる。

半径方向の熱応力 σr は両表面で0,途中はすべて圧 縮となる。

鋳型部内の発生熱応力値の絶対値の最大は,内表面 r = r_1 に生ずる σ_{t_1} および σ_{z_1} で,つぎに大きい値は外表 面 r = r_2 での σ_{t_2} および σ_{z_2} である。

図10

秋田高専研究紀要第7号

 $\sigma_t \ge \sigma_z$ の零点, すなわち無応力の発生箇所は, 鋳型 の中心より若干内面側と外面側にそれぞれ位置する。

なお、 σ_r の最大値は鋳型厚さの中心よりわづかに内面側に生ずる。

また,以上の結果より注湯後の同時刻における発生熱 応力値は,鋳型厚さの大きいものほど大きいが,時間経 過による減少率はわづかながら鋳型厚さの小さい方が大 きいことがわかる。

しかし,経過時間が大きくなるにつれてこの差異は殆 んど認められず,ほぼ平衡状態となる。

このことをより明確に示すために、図―12に鋳型内外 面の熱応力値と注湯後の経過時間の関係を示した。

つぎに,注湯後15秒間にきわめて急激に熱応力が変化 増大する特殊な場合における加熱側表面に生ずる熱応力 の経時変化を図―13に示した。

これは前記理論解析で述べたように,非定常熱応力の 問題として取扱った結果で,横軸に無次元化時間 t*,縦 軸に無次元化表面熱応力 σ₁₅*,パラメータは Biot 数 Bi である。

図―13に示される結果から,内表面熱応力は注湯後に 急速に上昇し,ある小時間を経て最大値 σmax* に達し, その後は比較的ゆるやかに低下する。

そして,この最大値は Biot数 が大きいほど早い時期 において高い値に達することがわかる。

この結果は,鋳込み初期の急激な熱応力の増大によっ ていわゆる熱衝撃を受けて鋳型厚さの少さいものほど初 期欠陥の現われる度合の多いことを示すものである。

5. 結 言

同質の材料で作られた寸度の異なる中空円筒金型3種 類について注湯実験し,発生熱応力を求めた結果の中か ら,主なものをまとめるとつぎのようである。

(1) 鋳型厚さによって同一時刻に発生する熱応力値は異なり,鋳型厚さの小さいものほど大きい。

(2) 発生熱応力のうち絶対値の最大のものは、加熱側 表面の引張応力として現われ、その最大値の経時変化 は鋳込み初期において鋳型比の小さいものほど大であ るが、時間が経過するにつれて逆に鋳型比の大きいも のほど大きくなる。

(3) 熱応力の経時変化に対する増加および減少の度合 は、鋳型比の小さいものほど鋳込み初期においてそれ ぞれ大きく、時間が相当経過した後は、鋳型比には関 係なく一様の減少率を示す。

(4) 特に鋳込み初期については、非定常問題として取扱い、Biot 数の大きいものほど熱衝撃の度合が大きい。

昭和47年1月

32

浩

6. 記 号

a:温度伝導率 m²/h Bi:Biot 数

Cp:比熱 kcal/kg°C

- E:縦弾性係数 kg/m²
- h:厚さ m
- K:鋳型比
- k:定数
- r:半径 m
- T:温度 ℃
- t:時間 h.sec
- t*:無次元化時間
- α:熱伝達率 kcal/m²h°C
- β:線膨張係数℃⁻1
- γ:比重量 kg/m³
- σ:応力 kg/m²
- σ*:無次元化応力
- λ:熱伝導率 kcal/mh°C
- *θ*:温度 ℃
- ぃ:ポアソン比

添字

- 0:初温
- 1:内面
- 2:外面
- f:終温あるいは外部流体温度
- t:接線方向
- r:半径方向
- z:軸方向
- max:最大值
- men:平均值
 - ts:表面

参考文献

(1)	小泉	堯	「日才	、機械学会	≿誌」	
				68—562	(1965),	1629
(2)	"		「同」	:論文集」		
				28—194	(1962),	1314
(3)	千々岩	建児	「機胡	我の研究」		
				14—12	(1 9 62),	1451
(4)	M.N.Srinivasan 他 「Trans.A.F.S」					
				67 (195	9), 449	
(5)	M.R.S	eshad	ri 他	ΓMode	rn Casti	ng」
				40—12	(1961),	616

- (6) V.Panchanathen 他 「Modern Casting」 43—4 (1963), 158
- (7) 鵜戸口英善「内燃機関」
 - 6-58,59,60 (1967),53.57.57