管内水流の水頭損失におよぼす

こぶ部の影響

守 屋 格·樋 渡 久 孝 · 渡 辺 勇 考*

Effect of a Swelling Part on Head Loss of Water Flow through a Pipe

Satoru MORIYA, HiSataka HIWATARI and Yuko WATANABE (昭和46年10月28日受理)

1. 緒 言

まっすぐに置かれた管路の途中に,この管路の直径よ りも大きい直径をもつ短管を挿入するとき,水流がこの 短管においてどのような水頭損失を生ずるかは,誠に興 味のあることがらであるが,この水頭損失についての研 究は身近かなところに見あたらないようである。それ故 に,たとえば管路に挿入したこのような短管(ここでは 管路のこぶ部と仮称する)の影響をうけて水流に生ずる 水頭損失が,こぶ部のない直管路の水流に生ずる水頭損 失に比べて,どのように増加するかというような実際問 題を取り扱う場合には,これを解決するための資料が得 られない。

ところで,こぶ部内を通過する水流の流相はきわめて 複雑なものと想像される。したがって,こぶ部における 水流が生ずる水頭損失は理論的に求める事はほとんど不 可能で,専ら実験的に求める他はないと考えられる。

こぶ部における水流が生ずる水頭損失を実験で求める には、こぶ部に連接する上流および下流の直管路の中で こぶ部内の水流によって影響をうける領域の範囲を正確 に見いだす事が大切である。しかし、その範囲の測定が なかなか容易でない。

そこで,こぶ部における水流が生ずる水頭損失そのも のを求める事は後日に譲り,ここではまず,上にあげた ような実際上の問題を解こうとするにあたって,ある程 度参考になるような資料を得ようとして,管路にこぶ部 を挿入する事によって増加する水頭損失の量を種々の管 内流速の下で,こぶ部の長さと拡大率とを変化させた場 合について求め,これをベルヌイの方程式に適用できる ような速度水頭の形で表わした。またこぶ部の長さと拡 大率とを変化させた場合の水頭損失係数を求め,相当管 長比との関係について調べてみた。

* 山形大学工学部精密工学科

2. 実験装置および方法

図1は実験装置の概略図を示すものである。

水は渦巻ポンプPで貯水槽 S・T から水槽Tに揚げら れる。この水槽には溢水管 O・P が取り付けてあり,こ れによって水槽の水位を一定に保つ。水はTから図に示 すように途中にこぶ部Eを有する水平管路 H・P に送ら れ,流量調整弁Vを経て管路の末端Nから大気中に吐出 された後,水路Cに流入して S・T まで流下し,以上の 循環をくりかえす。

図1 実験装置略図

管路 H・P には途中にこぶ部を挿入した断面①から断面③までの区間と,こぶ部を挿入しない断面③から断面 ③までの区間を上流から下流に向って設定した。両区間 の長さは同じで1800mmである。こぶ部の挿入によって増 加する水頭損失は,この各区間内で水流が生ずる圧力水 頭損失を求めるが, M₁, M₂ はそれぞれの水頭損失を測 定するための水銀式示差マノメーターである。マノメー ターに通ずる静圧孔は①と③に1つずつ開け,③には位 相を変えて2つ開けた。

末端Nは空気が管路内に貯えられるのを防ぐため,詳 細図のようにした。

Nの近くには水受けBと台秤Wを置き,Nから大気中 に吐出される水を一定時間(30秒とした)の間Bで受け

秋田高専研究紀要第7号

たものをWで秤量して管路の流量を見いだし,これから 管内流速を求めた。

実験結果整理のための管路のRe数を求める際に必要な 水温としては、Bで受けた水の温度を用いた。

管路とこぶ部は共に硬質塩化ビニール管から成る。ま たこぶ部の取り付けにあたっては、H・P ①—③の区間 をこぶ部の長さLだけ切り取り,図2はその方法を示す。 (a)はこぶ部の内径を一定にしてその長さを変化させる場 合に用い,(b)はこぶ部の長さを一定にしてその内径を変 化させる場合に用いた。

図2 こぶ部の取付方法

なお,こぶ部には空気抜き孔を設け,あらかじめ空気 を抜いてから実験を行なった。

実験に使用した管路の内径 d, こぶ部の内径 D, こぶ 部の長さ L, こぶ部の拡大率m (= D^2 / d^2)の組み合わ せは表1に示すとうりである。

表1 実験に使用したこぶ部

(ただし,管路の内径 d は20.0mmである)

ی ت	、部長さ	拡大率	こぶ部内径
L	(mm)) m	D (<i>mm</i>)
		1.6	25.3
	40	2.4	31.0
		4.2	41.0
	80	6.7	51.8
		11.3	67.2
20,	40, 60) 2.4	31.0
80,	100	6.7	51.8

3. 実験の整理と結果

今,管路断面①──③間の距離をS,①──③区間内でこ ぶ部内の水流から影響を受ける領域の未知の長さをℓと する。Sは1800mmでd (=20.0mm)の90倍にとってある ので、ニクラゼの乱流における入口区間の長さ(ℓ ') に ついての実験値 ℓ ' = (25~40)d などから類推すれば、 Sは ℓ に対して十分に長く設定してあると考えられる。

したがって、① 一 ②区間内で水流に生ずる水頭損失を h_i とすれば、h_i は ℓ の部分内の水流に生ずる水頭損失h, と長さ $(s - \ell)$ の直管の部分内で摩擦により生ずる全 水頭損失 h' との和から成る。

すなわち,

$$h_1 = h_0 + h' \tag{1}$$

直管路の摩擦係数 λ を管路の位置に関係なく一定であると仮定すれば、ダルシー・ワイスパッハの式から、

$$h' = \lambda \frac{S - \ell}{d} \cdot \frac{v^2}{2g}$$
(2)

ここで, vは管路内の平均流速である。

②一③間の距離は①一③間の距離Sに等しくしてあるので、③一③区間内で水流に生ずる水頭損失をh₂とすると、h₂は長さSの直管内で摩擦により生ずる水頭損失だけから成る。

したがって,

$$h_2 = \lambda \frac{S}{d} \cdot \frac{v^2}{2g}$$
(3)

式(1), (2), (3)から

$$h_1 - h_2 = h_0 - \lambda \frac{\ell}{d} \cdot \frac{v!}{2\mathcal{Y}} \qquad (4)$$

すなわち, h_i − h₂はλを前述のように仮定するとき, こぶ部を挿入することによって増加する水頭損失を与え る。

本実験の始めにあたって、管摩擦を測定してみたとこ 1) ろ、 λ の値は図3のようになり、ブラジウスの実験値と 比較しても満足でき、かつ、 λ は管路の位置によってほ とんど変らない結果が得られた。また、こぶ部挿入前の 直管路のみの場合の③—⑧区間内の水頭損失 h_2 と、こぶ 部挿入後における h_2 とを比較し、①—③間距離Sが1800 mmで十分である事を実験的に確かめた。

昭和47年1月

故に,こぶ部を挿入する事によって増加する水頭損失 を h とすると, h は次式によって求める事ができる。

 $h = h_1 - h_2$ (5) 図 4 ないし図 7 は、 h_1 、 h_2 を測定して求めた h の値を示

す。図4と図5はそれぞれm=2.4 および m=6.7 の場 合において,Lをパラメータとした h-Re曲線であり, 図6と図7はそれぞれL=40mmおよびL=80mmの場合に おいて,mをパラメータとした h-Re曲線である。

これらの結果によれば

- (i) Re数が増加するほどhは増加する。
- (ii) 拡大率mが一定の場合、こぶ部の長さLが大なるほどhは大になる。
- (iii) こぶ部の長さLが一定の場合, グラフは交錯し 拡大率mの変化は hに直接の影響を与えない。

つぎに,こぶ部を便宜上,管路内に置かれた長さの短 かい一般の障害物と同様に取り扱って

$$h_0 = \zeta \frac{v^2}{2\mathcal{G}} \tag{6}$$

と,おいてみる。ここにくはこぶ部の全抵抗係数である。

$$X 9 m = 6.7$$

昭和47年1月

と、おけば $h = K - \frac{v^2}{2g}$

7

Kは,無次元量でいわゆるこぶ部による水頭損失係数 であり,hは管路内水流の速度水頭の倍数で表わした形 となり,Kの値を知れば,これをそのままベルヌイの方 程式に入れて実際の水流のエネルギ式をたてることがで きるから便利である。

(8)

図8ないし図11は、それぞれ図4ないし図7の結果を 用い式(8)によって算出した損失係数Kの値を示す。

これらの結果によれば,

- (i) 損失係数Kは実用的速度の範囲において, Re数 に関係なくほとんど一定である。
- (ii) 拡大率mが一定の場合,こぶ部の長さLが大な るほど損失係数Kは大となる。
- (iii) こぶ部の長さLが一定の場合,L=80mmとLが 大きいと,拡大率mが大なるほど損失係数Kも大 なる傾向にあるが,L=40mmとLが小さいと,m による影響がはっきり現われなくなる。

以上のようにして、種々の形状のこぶ部についての損 失係数Kを知る事ができたが、このKをもとにしてこの 大きさの程度を推察してみる。

式(7)から

$$\zeta = \mathbf{K} + \lambda \frac{\ell}{\mathbf{d}}$$

となるが、この式中の ℓ は未知の値であるので、くはこ の式によってすぐには求められない。ただ、管内水流は こぶ部に流入する直前で僅かではあるが、ある領域にわ たって乱れるため、 ℓ はL+ ℓ よりも多少大きくなるが この管内水流が乱れる領域を考慮に入れないで、

 $\ell = L + \ell'$

とし,またℓ′としては先に引用したℓ′=(25~40) dを 全てのこぶ部に対し適用できると仮定して、くを計算し てみれば、

 $\zeta = (K + 25 \lambda) \sim (K + 40 \lambda)$

が,得られる。

もとより,このくは種々の仮定のもとで得たもので, くの真の大きさを与えるものではないが,少なくともこ の大きさの程度を推量する際の一つの目安になり得るも のと考えられる。

なお、くに関して考えてみたついでに、こぶ部内の水 流の流相を類推できるような図12の写真を掲げておく。 この写真は、透明アクリル板で作った厚さの薄い長方形 断面の流路の中に比重が水より僅かに大きい固形粒子を 混合した水を流して撮ったものである。2次元的なもの であるが、この写真からこぶ部内水流の流相がほぼ推察 できる。

hは,式(8)のように速度水頭の形で表わされたが,別 に,式(9)のような相当管長さの関数で表わすこともでき る。

$$h = \lambda \frac{\ell e}{d} \cdot \frac{v^2}{2g}$$
(9)

ここに、 ℓ eは hと同量の水頭損失を生ずる直管路の長 さ、すなわち、相当管長さである。

式(8)と式(9)との比較から

ℓ /dは, 無次元量でいわゆる相当管長比であり, 実 際問題を取り扱うときに役立つ値である。

秋田高専研究紀要第7号

管内水流の水頭損失におよぼすこぶ部の影響

表2 拡大率mと水頭損失係数ごとの関係

т	1.0	1.1	1.25	1.43	1.67	2.0	2.5	3.33	5.0	10.0
ζ1	0	0.01	0.04	0.09	0.16	0.25	0.36	0.49	0.64	0.81
ζ2	0	0.036	0.089	0.14	0.18	0.24	0.29	0.34	0.38	0.41
ζ^1	0	0.046	0.129	0.23	0.34	0.49	0.65	0.83	1.02	1.22

図13

図14

4. 考察

こぶ部を断面積の急変する急拡大部と急縮小部が,相 当に接近している管路と考えると,種々の仮定を用いて 求めた損失係数Kを,ボルダ・カルノーの急拡大流れに 基く水頭損失係数 ムとワイスバッハの急縮小流れに基く 水頭損失係数 なとの和なと比較してみる。

くと拡大率mとの関係は表2に示される通りである。 図13はこぶ部による損失係数Kとくとの関係を示す。 図にみられるように

(i) 損失係数Kはごに比べて小さく,かつこぶ部の 長さLが小さいとより小さくなる。

これは図12,図14で示されるように、こぶ部の長さL が小なるほど、流れが急拡大以前の流れ状態を維持しな がら噴流状態でこぶ部内を通過し、噴流内の速度が維持 され、流体内部の衝突損失が減少するためと思われる。

ここで図14は、図12と同様な透明アクリル板で作った 流路の中に煙を流して撮ったものであり、こぶ部の長さ Lが小さい場合における、拡大率mが大きいときと小さ いときの両方の流相を良く示している。

(ii) こぶ部の長さL=40mmのとき,拡大率mが大な
ると損失係数Kが減少している。

これは図14に示されるように,拡大率mが小さいとき は、こぶ部内の管摩擦は考えられるが、mが大きくなる とこぶ部内の噴流とこぶ部の管壁との間(図14のαに示 される)に死水領域が生じ、管摩擦が減少するものと考 えられる。このように管摩擦が減少しているにもかかわ らず式(5)により、hを求める際に③—③区間内に生ずる 水頭損失h₂をそのまま差し引いたため減少したものと思 われる。

(iii) こぶ部の長さLを十分に大きくすると,損失係 数Kはくと同一になるものと考えられる。

また,上述のような死水領域を生ずる拡大率mは,こ ぶ部の長さLが大なるほど大になる。

こぶ部に死水領域ができ,流れが急拡大以前の流れ状 態に近い形でこぶ部内を通過するようになると,すなわ ち,こぶ部の長さLに比し,拡大率mがある程度大きく なると,mを増しても,死水領域が増すだけで損失係数 Kは増加せず一定になるものと考えられる。

以上まとめると、本実験における水頭損失係数Kと拡 大率mとの関係は図15のようになる。

昭和47年1月

図15 損失係数Kと拡大率mとの関係

5. 結 言

管路にこぶ部を挿入することによって増加する水頭損 失について実験を行なった結果,実際上の問題を解こう とするにあたって,ある程度参考になる資料を得ること ができた。

それによって増加する水頭損失は

$$h = K \frac{v^2}{2g}$$

で表わされ、水頭損失係数Kは図15に示される通りである。

また

 $\frac{\ell^2}{d} = \frac{K}{\lambda}$

なる関係がある。ℓ e/dは相当管長比で実際問題を取り 扱うときに役立つ値である。

文 献

1)	板谷松樹	水ナ	了学	(JSN	1E)	(1960)
2)	植松時雄	機	論	2—7	254	(1936)

14