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Following the idea of A. Weinstein [5], we construct a closed 2-form on Hom(m(EQ) SO(4))

which is the pullback of a closed 2-form on the quotient space Hom(m(%,), S

1 Introduction

In classical theory, it is well-known that
there is one-to-one correspondence between
the conjugate classes of homomorphisms
m (M) — SO(4) and the isomorphism classes
of flat SO(4)-bundles over M. So it is
important to investigate the property of
Hom(m (M), SO(4))/SO(4) in the study of
flat SO(4)-bundles.

On the other hand, for any Lie group G,
we can construct a simplicial manifold NG
called nerve of G and the de Rham complex
Q*(NG(*)) on it. We call this complex the
BSS complex. In [5], A. Weinstein introduced
the equivariant BSS complex ;) (NSU(2))
and used a cocycle in it to construct a sym-
plectic form on Hom(m(X,), SU(2))/SU(2).

In this paper, we construct a closed 2-
form on Hom(m(X,), SO(4)) using a cocycle
in 930(4)(]\[50(4)).

2 The Euler class in the
BSS complex

In this section we take G = SO(4) and recall a
cocycle in Q*(NG) which represents the Euler
class.

0(4))/50(4).

Theorem 2.1 ([3]). The cocycle which repre-
sents the Euler class of ESO(4) — BSO(4)
in QY(NSO(4)) is a sum of the following F 3
and E272.'
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3 A cocycle in the equiv-
ariant BSS complex

In this section we recall a cocycle in
Qyso(NSO4)).



We take a cochain u € (QY(G) ® G*)¢ as
follows:
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Here X € G =so0(4).

Theorem 3.1 ([4]). Ey 3+ FE2a+u is a cocycle
in Qo) (NSO(4)).

4 A closed 2-form
Hom(m(X,), SO(4))

In this section, we construct a closed 2-form
on Hom(m(X,), SO(4)).
We set 7 := m1(%,). The evaluation map-
ping
ev : ? x Hom(m, SO(4)) — SO(4)?

induces a pullback ev* : Q5 (SO(4)P) —
Q500 (77 x Hom(m, SO(4))). Since 7 is dis-
crete, 255 (P xHom(m, SO(4))) is identified
with CP() ® 5, (Hom(m, SO(4))), where
CP(m) is the space of the real-valued func-
tions on 7P. Especially, ev*Es4 belongs to
C?(7) @ Qo (Hom(m, SO(4))).
Proposition 4.1. We take a 2-cycle
c € Cy(m), then ev*Eys(c) belongs to
Q%o (Hom(m, SO(4))) and the following
equations hold:

d(eV*EQ,Q (C)) = O,

on

d(;(eV*EQQ (C)) = 0.

So ev*Es5(c) is a closed 2-form and also the
pullback of a closed 2-form on the quotient
space Hom(my(3,), SO(4))/SO(4).

Remark 4.1. When c is a 2-boundary, the
equation ev*Eys(c) = 0 holds so paring ¢ €
Hy(m) with ev*Eys defines a natural homo-
morphism Hy(m) — 920(4)(H0m(7r, SO(4))).
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