A closed 2－form on the quotient space $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right) / S O(4)$

Naoya Suzuki

（平成30年11月5日受理）

Following the idea of A．Weinstein［5］，we construct a closed 2－form on $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right)$ which is the pullback of a closed 2 －form on the quotient space $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right) / S O(4)$ ．

1 Introduction

In classical theory，it is well－known that there is one－to－one correspondence between the conjugate classes of homomorphisms $\pi_{1}(M) \rightarrow S O(4)$ and the isomorphism classes of flat $S O(4)$－bundles over M ．So it is important to investigate the property of $\operatorname{Hom}\left(\pi_{1}(M), S O(4)\right) / S O(4)$ in the study of flat $S O(4)$－bundles．

On the other hand，for any Lie group G ， we can construct a simplicial manifold $N G$ called nerve of G and the de Rham complex $\Omega^{*}(N G(*))$ on it．We call this complex the BSS complex．In［5］，A．Weinstein introduced the equivariant BSS complex $\Omega_{S U(2)}^{*}(N S U(2))$ and used a cocycle in it to construct a sym－ plectic form on $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S U(2)\right) / S U(2)$ ．

In this paper，we construct a closed 2－ form on $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right)$ using a cocycle in $\Omega_{S O(4)}^{*}(N S O(4))$ ．

In this section we take $G=S O(4)$ and recall a cocycle in $\Omega^{4}(N G)$ which represents the Euler class．

2 The Euler class in the BSS complex

Theorem 2.1 （［3］）．The cocycle which repre－ sents the Euler class of $\operatorname{ESO}(4) \rightarrow B S O(4)$ in $\Omega^{4}(N S O(4))$ is a sum of the following $E_{1,3}$ and $E_{2,2}$ ：

$$
\begin{gathered}
E_{1,3} \in \Omega^{3}(G) \xrightarrow{d^{\prime}} \quad \begin{array}{c}
\Omega^{3}(N G(2)) \\
\prod_{d}
\end{array} \\
\\
E_{2,2} \in \Omega^{2}(N G(2))
\end{gathered}
$$

$E_{1,3}=$
$\frac{1}{192 \pi^{2}} \sum_{\tau \in \mathfrak{S}_{4}} \operatorname{sgn}(\tau)\left(\left(h^{-1} d h\right)_{\tau(1) \tau(2)}\left(h^{-1} d h\right)_{\tau(3) \tau(4)}^{2}\right.$

$$
\left.+\left(h^{-1} d h\right)_{\tau(3) \tau(4)}\left(h^{-1} d h\right)_{\tau(1) \tau(2)}^{2}\right),
$$

$E_{2,2}=$
$\frac{-1}{64 \pi^{2}} \sum_{\tau \in \mathfrak{S}_{4}} \operatorname{sgn}(\tau)\left(\left(h_{1}^{-1} d h_{1}\right)_{\tau(1) \tau(2)}\left(d h_{2} h_{2}^{-1}\right)_{\tau(3) \tau(4)}\right.$

$$
\left.+\left(h_{1}^{-1} d h_{1}\right)_{\tau(3) \tau(4)}\left(d h_{2} h_{2}^{-1}\right)_{\tau(1) \tau(2)}\right) .
$$

3 A cocycle in the equiv－ ariant BSS complex

In this section we recall a cocycle in $\Omega_{N S O(4)}^{4}(N S O(4))$ ．

We take a cochain $\mu \in\left(\Omega^{1}(G) \otimes \mathcal{G}^{*}\right)^{G}$ as follows:

$$
\begin{aligned}
& \mu(X)= \\
& \frac{-1}{64 \pi^{2}} \sum_{\tau \in \mathfrak{G}_{4}} \operatorname{sgn}(\tau)\left((X)_{\tau(1) \tau(2)}\left(h^{-1} d h\right)_{\tau(3) \tau(4)}\right. \\
& \left.\quad+(X)_{\tau(3) \tau(4)}\left(h^{-1} d h\right)_{\tau(1) \tau(2)}\right) \\
& -\frac{1}{64 \pi^{2}} \sum_{\tau \in \mathfrak{G}_{4}} \operatorname{sgn}(\tau)\left((X)_{\tau(1) \tau(2)}\left(d h h^{-1}\right)_{\tau(3) \tau(4)}\right. \\
& \left.\quad+(X)_{\tau(3) \tau(4)}\left(d h h^{-1}\right)_{\tau(1) \tau(2)}\right) .
\end{aligned}
$$

Here $X \in \mathcal{G}=\mathfrak{s o}(4)$.
Theorem 3.1 ([4]). $E_{1,3}+E_{2,2}+\mu$ is a cocycle in $\Omega_{S O(4)}^{4}(N S O(4))$.

4 A closed 2-form on $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right)$

In this section, we construct a closed 2 -form on $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right)$.

We set $\pi:=\pi_{1}\left(\Sigma_{g}\right)$. The evaluation mapping

$$
\mathrm{ev}: \pi^{p} \times \operatorname{Hom}(\pi, S O(4)) \rightarrow S O(4)^{p}
$$

induces a pullback $\mathrm{ev}^{*}: \Omega_{S O(4)}^{*}\left(S O(4)^{p}\right) \rightarrow$ $\Omega_{S O(4)}^{*}\left(\pi^{p} \times \operatorname{Hom}(\pi, S O(4))\right)$. Since π is discrete, $\Omega_{S O(4)}^{*}\left(\pi^{p} \times \operatorname{Hom}(\pi, S O(4))\right)$ is identified with $C^{p}(\pi) \otimes \Omega_{S O(4)}^{*}(\operatorname{Hom}(\pi, S O(4)))$, where $C^{p}(\pi)$ is the space of the real-valued functions on π^{p}. Especially, ev* $E_{2,2}$ belongs to $C^{2}(\pi) \otimes \Omega_{S O(4)}^{2}(\operatorname{Hom}(\pi, S O(4)))$.
Proposition 4.1. We take a 2-cycle $c \in C_{2}(\pi)$, then $\mathrm{ev}^{*} E_{2,2}(c)$ belongs to $\Omega_{S O(4)}^{2}(\operatorname{Hom}(\pi, S O(4)))$ and the following equations hold:

$$
d\left(\operatorname{ev}^{*} E_{2,2}(c)\right)=0, \quad d_{G}\left(\operatorname{ev}^{*} E_{2,2}(c)\right)=0 .
$$

So ev* $E_{2,2}(c)$ is a closed 2-form and also the pullback of a closed 2-form on the quotient space $\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), S O(4)\right) / S O(4)$.

Remark 4.1. When c is a 2-boundary, the equation $\mathrm{ev}^{*} E_{2,2}(c)=0$ holds so paring $c \in$ $H_{2}(\pi)$ with $\mathrm{ev}^{*} E_{2,2}$ defines a natural homomorphism $H_{2}(\pi) \rightarrow \Omega_{S O(4)}^{2}(\operatorname{Hom}(\pi, S O(4)))$.

References

[1] N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Grundlehren Math. Wiss. 298, SpringerVerlag, Berlin, 1992.
[2] J.L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, (1978).
[3] N. Suzuki, The Euler class in the Simplicial de Rham Complex, International Electronic Journal of Geometry, Vol 9, No.2, (2016), pp. 36-43.
[4] N. Suzuki, The equivariant de Rham complex on a simplicial G_{*}-manifold, Advances and Applications in Mathematical Sciences. Vol.16, No.10, August, pp. 337347 (2017).
[5] A. Weinstein, The symplectic structure on moduli space. The Floer memorial volume, Progr. Math., 133, Birkhäuser, Basel,1995, 627-635.

