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The Discretization Error in Boundary
Value Problems for the Second Order

Differential Equations ().

Shoichi SEINO

1. Introduction

Although a number of papers guarantee that a consistent method is convergent, it is
hardly useful for purposes of estimating the discretization error. In particular it
fails to indicate the order of the discretization error. In [1), P. Henrici described the
discretization error in boundary value problems of class M which will be said if it is
of the form
y'=1(x, y), y(@)=a, y(b) =8,
where a<b and « and B are given constants, and suggested that a similar result could
be true for the generalized boundary value problems,
In this paper, we consider the boundary value problem (BVP for short)
(1) v =gy + i(x, ), y@ = a, y() = B,
where —oo<a<b <+o, a and p are arbitrary constants,
We assume that the function g(x)
(a) is defined and continuous in the interval (a, b), where a and b are finite,
(b) is monotone decreasing,
(c) is nonnegative in (a, b],
also that the function f(x, y)
(d) is defined and continuous in the strip a<x<b, —oco<y<+oo,
(e) satisfies a Lipschitz condition with respect to y,
() fy(x, y) is continuous and satisfies fy(x, y) =20 in a<x=b, —oo<y<+oo,
We shall establish the error bound and asymptotic formula for the discretization
error., These results are stated as Theorem 3 and Theorem 4.

2. Preliminary Results

We shall first list some definitions.

Let W be the set of the first n integers, W={1, 2,.--.--..- ,n}. A matrix A=(ay) is
called reducible if it is possible to decompose W into two nonempty, disjoint subsets
Sand T, such that a;; = 0 for i €S and j= T. A matrix which is not reducible is
called irreducible. ‘

[Lemma 1]

A tridiagonal matrix A= (asj) is irveducible if and only if
Qiicy X 0 (1=2, 3,+eeereeerens ,n) and
Giyis1 35 0 (i =1, 2, eeeeeernne ,n—1).

A matrix A with real elements is called monotone if Az=O0 implies z=0, where by
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the notation z=0 we mean that all components z; of the vector z satisfy z:=0.
As a consequence of this definition we obtain the following lemmas.
[Lemma 2]
A matrix A is monotone if and only if the elements of the inverse matrix A™! are
nonnegative,
[Lemma 3]
Let the matrix A = (ai;) be irveducible and satisfy the conditions
(1) a; =0, iNjii, j=1,2 0 ",
n =0 for i =1,2,ee ,n,
(i) Yai; {

=1 >0 for at least one i,

Then A is monotone.

[Lemma 4]

Let the matrices A and B be monotone, and assume that A—Bz=O0,

Then B1-A"120,

Now we introduce a few notations.
Let vectors y, f(y) and a be

y=[Ylv """"" sYN—l]Tr f(Y)=[f(x1’YI)’ """""" ,f(XN-I, YN-I)]Ty
a=[a—pBhM (X, a), 0, ,0, B—Rhi(xy,A)]T,
matrices J and B be
2 —1 ) B B
-1 2 -1 Bo B B
-1 2 -1 B >ﬁl B2
-1 2/, L B B

Let the system of finite difference equations

2) Jy+hBf(y)—a=0
have arisen from BVP of class M, If p denotes the order of the finite difference
operator, assume that the exact solution y (x) of BVP of class M has a continuous
(p+2) nd derivative in (a, b] and let

l
Z = max @+
a<x<b| ¥ & |

Assume that G is a positive constant which depends only on the difference operator

and that

(3) ﬂi = 0 (i=0, 17 Z)y .30+131+.32=1,
and

@ hL <1,

where L denotes the Lipschitz constant of f(x, y).
[Theorem 1]
Let the values yn satisfy the equations

%) —Yna+ Zyn —Yn41 +h2{ﬁofn-1+ ﬁlfn"‘ .Bzfnﬂ} =0,Kha*?,
where the 0, are arbitrary numbers satisfying |0,| <1, K and p are arbitrary nonnegaitve
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constants, and where fno=f (%n,¥s).
If (3) and (4) hold, then the discretization error e,=pyn, —y (%) satis fies

|e" ‘ = %2@_%)— «(GZh?+Kh9), n=1, 2, c0eeenns ,N—1.
{Theorem 2}

In addition to the hypotheses of Theorem 1, we shall now that the order p = 2 and
K = 0, and that the difference operator satisfies Bo = f., and that exact solution y (x)
is (p+4) times continuously differentiable, Then the ervor e, satisfies

en = e (x,) h? + 0 (h?*?),
where e (x) denotes the solution of BVP

e’ (x) = gx)e(x) — Cy®» (x), ela) =e) =0,
where C is called an ervor constant defined by Henrici.

Proofs of these ler_nmas and theorems are given in (1],

3. A priori Bound and Asymptotic Behavior of the Discretization Error
of BVP (1)

We extend the result of BVP of class M to BVP (1),

For the direct numerical solution of BVP (1), we introduce the points X, = a + nh
(n=1, 2,...... ,N), where h=(b—a)h¥-! and N is an appropriate integer. The difference
equation which determinate numbers y, approximating the values y (x.) of the true
solution at the points x, is

(6 —Vu-14+2Yn— Vo +h2 {By(gn 1Y n-1+ fu1) + Bi(&aY'n +10) +B(gns1V ns1+fai) } =0,
where g,=g(xy), fo=1(Xn, yn).

We shall assume that ; (i =0, 1, 2) satisfy (3) and f,=p,.

Furthermore we approximate y’ by

Vaa=h?(ya=¥a-1), Va=Ch)'(You—V¥o-1), ¥Vna =h7 (Fou—Va).

Then (6) is as follows ;

) —Va-1+2Yn—Yau+h {An _1Yn-1+Baya+ Cn+1Yn+1} +h? {.Bofn-l +Bifn+ Bzfnn} =0,

-where Ap_;=—(Bign-1+ —%— Bign), B =8ign-1—B:8ns1, Con= —%— Pigo+ Pogni.

The further discussion is simplified by the use of vector and matrix notation.
Defining the vector

b = (a+hAa—h*Bf(x,, @), 0, oo 0, B—hCxg—h*Bf(xn, I,

and matrix

B, C

A B, G

C=
AN-3 >.B.\'-2 CN—l
Ay-, By,

the system of equations arising from demanding that (7) hold for n =1, 2,.....- ,N—-1

can be written in the form

(8  Jy+hCy+hBf(y)=b,
- -where vectors y, f (y) and matrices J, B are defined in § 2.
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As usual, we mean by the discretization error the quantity e, = yn — y(Xa), Wwhere y,
is the exact solution of the difference equation (8), ‘and y(x.) is the exact solution
of BVP (D). ‘

We denote the order of the finite difference operator by p. We assume that the ex—
act solution y(x) has a continuous (p+2)nd derivative in [a, b], and that Z and G are
defined in § 2.

Let us require that the stepsize h be so small that

® X<h<m1n{X1, X, X3}1

where
Xy= =Gk S OB (g, 3, N,
X, AL AR (o1, 2, N2,

X — CN— o\/ICNz-‘4 (ﬁohN—z'l'ﬂth-l)
: 2 (Bohy-o+ Bihx-1) ’

and
X — ﬁoﬁ: , (L=1, 2, e  N—2),
where hp=h(%n, Va)=fy(Xn, ¥n).
[Theorem 3 )
Instead of (8), let the values y. satisfy the equations
(10)  —=Ims+2Vn—Ynsa+h {AnsYna+Baya+Cnuyir} + 1 {Bofna+ Bufnt Bofass} =
0.Kha*?,

where the 0, are arbitrary numbers satisfying |0.| < 1 and where K and q are arbitrary
nonnegative constants. If (9) holds, then the discretization error satisfies

D e s oD B=X0) (Gzho4Khe), n=1, 2, NoL,

Proof, The exact solution y(x) satisfies

(12) —y(Xn-)+2¥(Xn) =Y Xnp) +h {An iy (Xao1) + Bay(Xn) + Cair¥ (Xns)}
+h? {Bef (Xut, V(En-))+Bif (Ko, ¥ X))+ Bof (Xns1y V(Xns1))} =01 GZhr*?,
where |0',] <1,
Subtracting this relation from (10), we get-
—eng+2e,—en+h {An en+Bren+Coyr e} + 02 { By(fai — £ (Xny, Y(Fu-1)))
+Bi(Efn—f(Xn, Y(E)))+Bo(fns1—f(Xnsy, Y(Xn+)))} =0" (GZhr*2+Kha?),
Applying the mean value theorem to the difference f(X,, ya)—f(Xa, ¥(Xa)), we have
as) —epy+2ep—ength {Anien +Bren+Cuyenya} +h?2{fhs s en i+ fihnen+
Bhusi€nn} =0n" (Gth+2+th+2).._ -
Denoting by H the diagonal matrix with elements hy (n=1, 2, ,N—1), we obtain
4 (J+hC+n?BH) e =(GZhr*?+Kh+?) 6, -
where O is a vector whose components numerically do not exceed 1, As the stepsize h
satisfies (9), the matrix J+hC+h?2BH satisfies the conditions of Lemma 3, and
furthermore we have J+hC+hBH>=f. From Lemma 4, it follows that
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O< (J+hCG+mBH)' < J-1,
If we put J'=(jmn), We obtain

lea| < (GZhP++Kha+?) Nzl jmn.

Through the fact that

%31 i = (xm—-az)h(zb—xm) ’

-

n=

we get

len| s—Cn=2)B=Xn) (Gzhe+Kho),

In addition to the hypotheses of Theorem 3, we shall now that the order p = 2,

that K = 0. Then it follows that |e| = 0(h?).

and

We shall assume that the exact solution y(x) of BVP (1) is (p+4) times continuously

differentiable,
[Theorem 4]}
Let e(x) be the solution of BVP

(18)  e"(x) = g(x)e(x)+h(x) e (£) —Dpuy®*® (x), e(a)=e(b)=0,

where h.(x)= fy, (x, y(x)), and Dy, 1is a nonzero constant,
Under the above hypotheses, the discretization error e. satisfies
en=e(x)h?+ 0(h?*?), n=1, 2, eeeeeer JN—-1.

Proof, As the order of the finite difference operator is p, we have

16) —V(Xa-1) +2¥(Xn) =Y (Xns) +h {An iy (Xn-1) + Bay (%) + Cony (Xas) }
+h2 {Bef (Xn-1, Y(Xn-))+Bf(Xn, V(Xu))+ Bef (Xn41, Y(Xn))}

= — D,y ®*? (xn)hP+?+0(he ™),
Since e, = 0(h?), |
QA7) f(Xa, Yo)—f(Xn, Y(Xn))=haea+0Ch9).
Furthermore, by (3) and f=5:

(18)  y@*B(Xn) =By ®*? (Xn-1) +HYP? (Xn) + By PP (Xn41).
On the other hand, values y, satisfy

a9 —Vo1+2¥n—Vou+h {An_1 Yo+ BoYa+ ConVas} +h? {Befny+ Bifn+ Bifnna} = 0.

We subtract (16) from (19), applying (17) and (18),

(20) —en_1+2en —_ en_1+h {An_len_l"“Bnen + Cn+1en+1} ‘I‘hz {ﬁohn-len-l‘l' ﬁlhnen
+Bihni€nir} =Dpsz {By PP (Xao1) + By PP (Xn) + B2y ®*P (Xny) } +0(HP*),

We now introduce new quantity, to be called magnified errors, by
S.=€n+hP, n=1, 2,.eeenn ,N—1.
Then (20) becomes
1)  —8&n1+28a—8nni+h {An18ao1+BuEn+Co€asi} +h? {By(has€ny

=Dy ®*?(Xn-1)) + Bi(hnEn—Dpsay ®*2(Xn)) + fo(Bnsi€nin
— Dpay ®*P(Xn41)) }}=0 (h?).

By the finite difference method the same relation would result from solving BVP (15)
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denoting by e, the approximation to e(xs).
We may appeal to Theorem 3 to conclude that
‘e =e(x,)+0(h?),

ie., en—e(xa)-hp+0(hr*D), n=1, 2, e N-1.

and the theorem follows.
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