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On Improving an Approximate Solution
of a Nonlinear Two Point Boundary Value Problem
by Deferred Corrections

Miki Kupo

Takashi YOSHIMURA

1. Basic Results and Definitions

Let us consider the nonlinear functional équation

F(w)=0 (1)

where the continuous operator F maps a linear subspace D of a Banach space E into a
banach space E°, We will always assume that (1) has a unique solution ueDcE,

We are interested in the approximate solution of (1) by means of discretization algo-
rithms, A discretization of (1) consists of families depending on a real parameter
heH=(0,h,], of

- (a) Banach spaces E;, and E: ;
(b) linear mappings An : E—Ep, A(:I:E“—-»E‘:I

(¢) functions (generally nonlinear) (Dl,:Eh—>E:

'(d) argbrithmé
©,(V)=0. (2)
The operators F, @, will be assumed to have the folldwing properties : ’
For each veD and heH there exists an expansion

QMW =W {F(+ 3, 173 By (D}0GH (3

~where the operators ij : D>E' are given independently of h, p>pyx. The exponents

appearing in (3) will be positive rational numbers satisfying
0<pi<p:<=++<pn.
The operators F and @, will always be assumed to be at least twice Fréchet-differentiable
on E and E,.
Let q be a positive number. We.will say that U(h)eE, is an approxiinate solution of
(2) if it satisfies ' »
125U )Y < Che
where C is a positive constant, : ;
If heH, u is the solution of (1), and U(h) is an approximate solution of (2), then
the vector
e(h)=U(h)—AwueE,
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will be called the global discretization error of (2),
Let u be the unique solution of (1). Property
[[UCh) —Anuf|—0 as h—0
will be called the discrete convergence of the approximate solution U(h). More precisely
the method (2 ) having an asymptotic expansion ( 3) will be convergent of order p if for
any heH, [e(h)||< Che where C is a positive constant, In this case U(h) will also be
- called a p-approximate solution of (2), -
If for any ecE,, a fixed V€E, and any heH there exists a nonnegative constant K
(which may be depend on V) such that
lel=K|[@x'(V)ell,
then we will say that the operator @,(V) is stable at V., This is equivalent to say that
if @,/(V) is onto, then it has an inverse and [|(2/(V)) Y <K.
. A differentiable operator @,(V) is said to have the mean value property if for each
Vi, V,€En, there exists a linear operator M(V,, V,) such that
Dn(V) —Ou(V) =M(V,, Vo)(Vi—-V,) , (4)

and
IM(Vy, V) — 00" (V)= 0(1)

for V,, V-V,

T heorem 1. Let u be the solution of (1) and U(h) an approximate solution of (2)
with exponent q=p,. If an expansion (3) with N=2 is valid, @» has the mean value property
and the M(U,dwu) of (4) has an inverse bounded in norm, then the method (2) is
convergent of order p.

We say that global discretization error has an asymptotic expansion up to the order
px>0 if there exists e;€E, independent of heH, such that

N p_’ T’
lle (h)—An j;l h'e |<Cyh

where Cyx>0 constant, and p>px. o

T heorem 2. Let U(h) be a pr-approximate solution with q=p:, and let u be the exact
solution of (1). Let ®n and @' have an asymptétic expantion ( 3) up to the order p,, with
F_,,] independent of h. If @, is stable at dnu, then the global‘ error e(h) has an asymptotic

expansion up to the order p, i.e.
k3 - = o
”e(h)—Anh 1 e‘ "éChp, p>’p1 ( 5)
where e, is independeut of h and satisfies 7
' F(we=—Fp .

Once the expantion (5) has been secured, a deferred correction procedures are available
in order to obtain a more accurate approximation than U(h).

Theorem 3.  Under the hypotheses of Theorem 2, and if there exists operator S,,l such
that '
4 F, u=S, W)=0h#) (6)
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where p*=mtn(p1,pz—n15i), “the ‘ '
U1=U—hple* ‘. . P N (7)
is an approximate solution of (1) of order p, that is ' 7
U= duul =0,
Here e* is the solution of the linear problem o
e ==S, (). (8
For the proof of Theorems 1, 2, 3, see (3].
Remark, Since the exact solution of (2 ) be an approximation to the solution of (1),

it is no use to solve (2) exactly, The condition q=p, says how incomplete this approxi-
mate solution can be,

9 Application to Non-linear Two-point Boundary Value Problem

We want to solve the problem

o V=i(x,y,y);  y@=0, yb)=0, (9
where f(x)eC®([a,b] xR?).

We will assume that f(x,y,y’) is sufficiently differentiable as a function of its three
arguments, which in particular will imply that the solution of (9).has continuous deriv-

atives up to the order necessary in the following discussion. In order to insure existence
and uniqueness of a solution of (9 ) we will assume that

fy(x,y,2)20, [f(x,y,2)| <K
in a certain bounded region Q=[a,b]JxBxB’. Let us call that solution y(x).

Let us take D the Banach space of twice continuously differentiable functions on [a,b)
which satisfy homogeneous boundary conditions, The operator F(y)=y"—1(x,y,y") will
map D into E°=C(a,b]. Let us subdivide the interval (a,b] into n equal parts by defining
xi=a+ih ; h=(b—a)/n. Let E, be the (n—1)—dimensional linear space of (n+1)—comp.

onent vectors V with V°=V“=O’ and let E: =Ry,_; . The norms involved will be the L..-

norms for vectors and matrices
Now we define for every veE, weE® the discretization mappings

Ahv={V(Xi)}i=0’ 1’ ...,n N o A1W={W(X1)}i=1 n_‘]_

We can now define a discrete version of (9) :
[@h(Y)]J=h_2("Yj—1+2YJ_YJ+1)+f(XJ»YJ»(YJ+1—YJ-1)/2h)=O(a. 1 " - (10)
U=i, ..., n—
which is defined for every YEE,. The Fréchet derivative of @, is '
i i J
{0 (YD} =h~* {— (1+ RE (V) et @+BE (Vey=(1—E (Deyes) an
(i=1,...,n-1)

the notation for the partial derivatives of f in (11) is £ (Y) =f, (x5, Y}, (Ys—Y,_0) /2h),
,and so on,. For any veC=[a,b]JcE we have the following asymptotic expansion

. N
O,(Anv) =A:l { F(v)+j§1 h? [_(_2% VeI 4g, ] } +0(hav+), (12)

where the functions g; can be obtained by reordering
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% :U)(V) N [ h me]V = h(f,

y=1 v! =l @2j+1D)!
Since @,(Y) clearly has the mean value property, if we are able to show that it is also
stable then, by Theorem 1, we will have that it is convergent of order 2.

Now, in order to carry out the following discussion we introduce some definitions (see
(13 ).

Let W be the set of the first n integers, W={1,2,...,n} . A matrix A= (a;) is called
reducible if it is possible to decompose W into two nonempty, disjoint subsets S and T,
such that a;;=0 for i€S and jeT. A matrix which is not reducible is called irreducible.

@ (&)
V(o g €

v

3' )2)+hsoooo‘

Lemma 1 A tridiagonal matrix A=(ai;) is irreducible if and only if
@i, i50 (1=2,3,...,n) and ai,i.<0 (1=1,2,...,n—1)
A matrix A with real elements is called monotone if A,>0 implies z>0. A monotone
matrix is nonsingular,
Lemma 2 Let the matrix A=(a:;) be irreducible and satisfy the conditions
(i) ay<o0, 1%7; i,j=1,...,n
N >0, fori=1,2,...,n
(11) X au[ . )
j= >0, for at least one i.
Then A is monotone.
From lemmas 1 and 2 it is clear that for sufficiently small h the operator @'.(Y) of (11)

is of monotonic type for any YEE,. In order to obtain the inverse of the tridiagonal
!
matrix q)h (Y), we can use the L-U decomposition methodEl], and from its procedure it

is clear that
12 (Y<K,
and hence @,(Y) is stable. _

In conclusion @, is stable and convergent of order 2, and we can apply the deferred
correction argorithms,

Now for the linear, one-step correction, which will give a fourth order approximate
solution, we will develope some special formulas in order to approximate y”/(x) and
y“).(x) at the interior points,

Let U be an approximate solution of (10) with ¢=2, and define

of;=0£(x;, Uy, (Usp1—Uj-) /2h)
=f(Xjs1, Ujp1, (U2—U3) [2h) —£(x-1, Uj-y, (U;—Uj-,) /2h).
Since e;=U;—y;=0(h?*) we have

0 0 o 11
(U, Sy —f(x, ey, XD 1(x, v,y + e /(g + G )+0(R) .

Moreover, since y”(x)=1f(x,y(x),y(x)) we have that
0xy" (%) =0:(x, y(X), y'(x)) =2hy"'(x)+0(h?).
On the other hand, since e;=h%(x;)+0(h?), we have
o(f(x,U,8U/2h) —1(x,y,y")])=h®%(fye(x)+fy (de(x)/2h+y"(x)/6))+0(h?)
mRf464E 1 A
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and

SO —£)/2h=ht S (£, + 57 - (@G0+y"(X)))+0(hY
and from the differentiability properties of all the involved functions we have that
6f(x) —of;=0¢h?).
Thus 6f; approaches 6,f(x) as 0(h®), and hence
y" (%)= (6f;)/2h=0(h?).
Similarly if we define

05 =1(Xy41, Ujs1, (Ussa—Uj)/2h) — 2 (x5, Uy, (Uyr — Uy /2h) + £(x50, Usa, (U —Uj_) /2h)

then YO — (3;) /h2=0(h?),
From these we can now define
- -1
[ SU) ]j - hfz o — “12 £1/(U)af,

which satiafies condition (6 ) since also fJ’(U)—f,’(y(x;))=0(h?). Hence, by Theorem 3

we can obtain solving (8) and using (7 ) an approximate solution U, of order 4.
. 3. Numerical Example

Let us consider the two point boundary value problem

—u”=1+0, 49(u’')? u{0)=u(1)=0
. . _ 1 cos 0,7(x—1/2)
whose solution is u(x) 049 ln[ cos 0.7/2. - ]

Using the deferred correction method in section 2, we could obtain the more accurate
values than the values which we obtained using the quasilinearization method that discu-
ssed in (6], (7] .

Deferred ; Errors
X Quasilinearization Correction Exact by

Method Method Values D.C.M.
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.046532 0.046578 0.046571 0.000007
0.2 0.082235 0.082316 0.082304 0.000012
0.3 0.107483 0,107587 0.107573 0.000014
0.4 0.122532 0.122649 0.122635 0.000014
0.5 0.127532 0.127653 0.127639 0.000014
0.6 0.122532 0.122649 0.122635 0.000014
0.7 0.107483 0.107587 0.107573 0.000014
0.8 0.082235 0.082316 0.082304 - 0.000012
0.9 0.046532 0.046578 0.046571 0.000007
1.0 0.000000 0.000000 0.000000 : 0.000000
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